intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Toán học phần 2

Chia sẻ: Phuoc Hau Phuoc Hau | Ngày: | Loại File: PDF | Số trang:16

79
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Số Phức là một quan hệ tương đương theo nghĩa tổng quát. Do đó nó chia tập D thành hợp các lớp tương đương không rỗng và rời nhau. Mỗi lớp tương đương (1.7.3) [a] = { b ∈ D : b ~ a } gọi là một thành phần liên thông chứa điểm a.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Toán học phần 2

  1. Ch−¬ng 1. Sè Phøc l mét quan hÖ t−¬ng ®−¬ng theo nghÜa tæng qu¸t. Do ®ã nã chia tËp D th nh hîp c¸c líp t−¬ng ®−¬ng kh«ng rçng v rêi nhau. Mçi líp t−¬ng ®−¬ng [a] = { b ∈ D : b ~ a } (1.7.3) gäi l mét th nh phÇn liªn th«ng chøa ®iÓm a. TËp D l tËp liªn th«ng khi v chØ khi nã cã ®óng mét th nh phÇn liªn th«ng. MiÒn D gäi l ®¬n liªn nÕu biªn ∂D gåm mét th nh phÇn liªn th«ng, tr−êng hîp tr¸i l¹i gäi l miÒn ®a liªn. Biªn ∂D gäi l ®Þnh h−íng d−¬ng nÕu khi ®i theo h−íng ®ã th× miÒn D n»m phÝa bªn tr¸i. Sau nay chóng ta chØ xÐt miÒn ®¬n hoÆc ®a liªn cã biªn gåm h÷u h¹n ®−êng cong ®¬n, tr¬n tõng D khóc v ®Þnh h−íng d−¬ng. Nh− vËy nÕu miÒn D l miÒn ®¬n liªn th× hoÆc l D = ∀ hoÆc l ∂D+ l ®−êng cong kÝn ®Þnh h−íng ng−îc chiÒu kim ®ång hå. • Trong gi¸o tr×nh n y chóng ta th−êng xÐt mét sè miÒn ®¬n liªn v ®a liªn cã biªn ®Þnh h−íng d−¬ng nh− sau. |z| 0 a < Im z < b a < Re z < b Re z > 0 |z|>R ∀ - [-1, 1] r
  2. Ch−¬ng 1. Sè Phøc 1. ViÕt d¹ng ®¹i sè cña c¸c sè phøc 4 + 5i 2 d. (1 + 2i)3 a. (2 - i)(1 + 2i) b. c. 4 − 3i 3 − 4i 2. Cho c¸c sè phøc a, b ∈ ∀. Chøng minh r»ng z + abz − (a + b) a. | a | = | b | = 1 ⇒ ∀ z ∈ ∀, ∈ i3 a−b a+b b. | a | = | b | = 1 v 1 + ab ≠ 0 ⇒ ∈3 1 + ab 3. ViÕt d¹ng l−îng gi¸c cña c¸c sè phøc 1+ i b. ( 3 + i)10 3 5 a. -1 + i 3 i c. d. 4. Gi¶i c¸c ph−¬ng tr×nh z2 - (2 + 3i)z - 1 + 3i = 0 z4 - (5 - 14i)z2 - 2(12 + 5i) = 0 a. b. (3z2 + z + 1)2 + (z2 + 2z + 2)2 = 0 c. d. z + z + j(z + 1) + 2 = 0 3 2 z+i z+i z+i 1 |z|= =|1-z|   + + e. +1=0 f. z−i z−i z−i z (z + i)n = (z - i)n 1 + 2z + 2z2 + ... + 2zn-1 + zn = 0 g. h. 5. TÝnh c¸c tæng sau ®©y A = C 0 + C 3 + C 6 + ... , B = C 1 + C 4 + C 7 + ..., C = C 2 + C 5 + C 8 + ... a. n n n n n n n n n n n ∑ cos(a + kb) v S = ∑ sin(a + kb) b. C= k =0 k =0 2π i 6. KÝ hiÖu ω = e l c¨n bËc n thø k cña ®¬n vÞ n n −1 n −1 ∑ ( k + 1)ω k ∑C ωk k a. TÝnh c¸c tæng n k =0 k =0 kπ n −1 n −1 n −1 n ∏ (z − ω ∏ sin ∑z ∀ z ∈ ∀, k l b. Chøng minh r»ng )= Suy ra = n −1 n 2 l =0 k =1 k =1 7. Trong mÆt ph¼ng phøc cho t×m ®iÓm M(z) sao cho a. C¸c ®iÓm cã to¹ vÞ l z, z2 v z3 lËp nªn tam gi¸c cã trùc t©m l gèc O b. C¸c ®iÓm cã to¹ vÞ z, z2 v z3 th¼ng h ng c. C¸c ®iÓm cã to¹ vÞ z, z2 v z3 lËp th nh tam gi¸c vu«ng 1 + un u0 ∈ ∀, ∀ n ∈ ∠, un+1 = 8. Kh¶o s¸t sù héi tô cña d y sè phøc 1 − un Trang 20 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. Ch−¬ng 1. Sè Phøc ∑| z 9. ∀ (n , zn) ∈ ∠ × ∀* v | argzn | ≤ α. Chøng minh r»ng chuçi | héi tô n n ≥0 10. Cho tam gi¸c ∆ABC. KÝ hiÖu M0 = A, M1 = B, M2 = C v ∀ n ∈ ∠, Mn+3 l träng t©m cña tam gi¸c ∆MnMn+1Mn+2. Chøng tá r»ng d y ®iÓm (Mn)n∈∠ l d y héi tô v t×m giíi h¹n cña nã? 11. Cho h m f : I → ∀ sao cho f(t) ≠ 0. Chøng minh r»ng h m | f | l ®¬n ®iÖu t¨ng khi v chØ khi Re(f’/ f) ≥ 0. 12. Cho f : 3+ → ∀ liªn tôc v bÞ chÆn. TÝnh giíi h¹n +∞ 1 f (t ) f (t / x) α −1 ∫ t α dt (α ≥ 1) ∫ 1+ t a. lim x b. lim dt 2 x → +0 x → +∞ x 0 13. Kh¶o s¸t c¸c ®−êng cong ph¼ng a. z(t) = acost + ibsint b. z(t) = acht + ibsht ln t c. z(t) = (t - sint) + i(1 - cost) d. z(t) = tlnt + i t 14. BiÓu diÔn trªn mÆt ph¼ng c¸c tËp con cña tËp sè phøc a. | z - 3 + 4i | = 2 b. | z - 1 | + | z + 1 | = 3 π π π v |z|>2 c. arg(z - i) = d. - < argz < 4 3 4 e. 0 < Imz < 1 v | z | < 2 f. | z - 1 | + | z + 1 | > 3 g. | z | < 2 v Rez > -1 h. | z - i | > 1 v | z | < 2 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 21
  4. Ch−¬ng 2 H m biÕn phøc §1. H m biÕn phøc • Cho miÒn D ⊂ ∀. ¸nh x¹ f : D → ∀, z α w = f(z) gäi l h m biÕn phøc x¸c ®Þnh trªn miÒn D v kÝ hiÖu l w = f(z) víi z ∈ D. Thay z = x + iy v o biÓu thøc f(z) v thøc hiÖn c¸c phÐp to¸n f(x + iy) = u(x, y) + iv(x, y) víi (x, y) ∈ D ⊂ 32 (2.1.1) H m u(x, y) gäi l phÇn thùc, h m v(x, y) gäi l phÇn ¶o, h m | f(z) | = u 2 + v 2 gäi l module, h m f (z) = u(x, y) - iv(x, y) gäi l liªn hîp phøc cña h m phøc f(z). Ng−îc l¹i, víi x = 1 (z + z ) v y = 1 (z - z ), ta cã 2 2 u(x, y) + iv(x, y) = f(z, z ) víi z, z ∈ D ⊂ ∀ (2.1.2) Nh− vËy h m phøc mét mÆt xem nh− l h m mét biÕn phøc, mÆt kh¸c ®−îc xem nh− h m hai biÕn thùc. §iÒu n y l m cho h m phøc võa cã c¸c tÝnh chÊt gièng v võa cã c¸c tÝnh chÊt kh¸c víi h m hai biÕn thùc. Sau n y tuú theo tõng tr−êng hîp cô thÓ, chóng ta cã thÓ cho h m phøc ë d¹ng (2.1.1) hoÆc d¹ng (2.1.2) VÝ dô XÐt w = z2 . Thay z = x + iy suy ra w = (x + iy)2 = (x2 - y2) + i(2xy) = u + iv • §Ó biÓu diÔn h×nh häc h m phøc, ta dïng cÆp mÆt ph¼ng (z) = (Oxy) v (w) = (Ouv). z0 w0 G D z(t) w(t) (z) (w) Qua ¸nh x¹ f §iÓm z0 = x0 + iy0 biÕn th nh ®iÓm w 0 = u0 + i v 0 §−êng cong z(t) = x(t) + iy(t) biÕn th nh ®−êng cong w(t) = u(t) + iv(t) MiÒn D biÕn th nh miÒn G ChÝnh v× vËy mçi h m phøc xem nh− l mét phÐp biÕn h×nh tõ mÆt ph¼ng (Oxy) v o mÆt ph¼ng (Ouv). NÕu ¸nh x¹ f l ®¬n ¸nh th× h m w = f(z) gäi l ®¬n diÖp, tr¸i l¹i gäi l ®a diÖp. H m ®a diÖp biÕn mét mÆt ph¼ng (z) th nh nhiÒu mÆt ph¼ng (w) trïng lªn nhau. NÕu ¸nh x¹ f l ®¬n trÞ th× h m w = f(z) gäi l h m ®¬n trÞ, tr¸i l¹i gäi l ®a trÞ. H m ®a Trang 22 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. Ch−¬ng 2. H m BiÕnPhøc trÞ biÕn mét mÆt ph¼ng (z) th nh nhiÒu tËp con rêi nhau cña mÆt ph¼ng (w). Trong gi¸o tr×nh n y chóng ta chØ xÐt c¸c h m phøc ®¬n trÞ x¸c ®Þnh trªn miÒn ®¬n diÖp cña nã. • Trªn tËp F(D, ∀) c¸c h m phøc x¸c ®Þnh trªn miÒn D, ®Þnh nghÜa c¸c phÐp to¸n ®¹i sè t−¬ng tù nh− trªn tËp F(I, ∀) c¸c h m trÞ phøc x¸c ®Þnh trªn kho¶ng I. Cho c¸c h m f : D → ∀, z α ω = f(z) v g : G → ∀, ω α w = g(ω) sao cho f(D) ⊂ G. Hm h : D → ∀, z α w = g[f(z)] (2.1.3) gäi l h m hîp cña h m f v h m g, kÝ hiÖu l h = gof. Cho h m f : D → ∀, z α w = f(z) v G = f(D). Hm g : G → ∀, w α z = g(w) sao cho f(z) = w (2.1.4) -1 gäi l h m ng−îc cña h m f, kÝ hiÖu l g = f . H m ng−îc cña h m biÕn phøc cã thÓ l h m ®a trÞ. C¸c tÝnh chÊt phÐp to¸n cña h m phøc t−¬ng tù nh− c¸c tÝnh chÊt cña h m thùc. VÝ dô H m w = z2 l h m ®a diÖp trªn ∀ v cã h m ng−îc z = w l h m ®a trÞ. §2. Giíi h¹n v liªn tôc • Cho h m f : D → ∀, a ∈ D v L ∈ ∀. H m f gäi l dÇn ®Õn giíi h¹n L khi z dÇn ®Õn a v kÝ hiÖu l lim f(z) = L nÕu z →a ∀ ε > 0, ∃ δ > 0 : ∀ z ∈ D, | z - a | < δ ⇒ | f(z) - L | < ε H m f gäi l dÇn ®Õn giíi h¹n L khi z dÇn ra v« h¹n v kÝ hiÖu l lim f(z) = L nÕu z →∞ ∀ ε > 0, ∃ N > 0 : ∀ z ∈ D, | z | > N ⇒ | f(z) - L | < ε H m f gäi l dÇn ra v« h¹n khi z dÇn ®Õn a v kÝ hiÖu l lim f(z) = ∞ nÕu z →a ∀ M > 0, ∃ δ > 0 : ∀ z ∈ D, | z - a | < δ ⇒ | f(z) | > M §Þnh lý Cho f(z) = u(x, y) + iv(x, y), a = α + iβ v L = l + ik ∈ ∀ lim f(z) = L ⇔ lim u(x, y) = l v lim v(x, y) = k (2.2.1) z →a ( x ,y )→( α ,β ) ( x ,y )→( α ,β ) Chøng minh Gi¶ sö lim f(z) = L ⇔ ∀ ε > 0, ∃ δ > 0 : ∀ z ∈ D, | z - a | < δ ⇒ | f(z) - L | < ε z →a ⇒ ∀ (x, y) ∈ D, | x - α | < δ/2 v | y - β | < δ/2 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 23
  6. Ch−¬ng 2. H m BiÕn Phøc ⇒ | u(x, y) - l | < ε v | v(x, y) - k | < ε lim lim Suy ra u(x, y) = l v v(x, y) = k ( x ,y )→( α ,β ) ( x ,y )→( α ,β ) Ng−îc l¹i lim lim u(x, y) = l v v(x, y) = k ( x ,y )→( α ,β ) ( x ,y )→( α ,β ) ⇔ ∀ ε > 0, ∃ δ > 0 : ∀ (x, y) ∈ D, | x - α | < δ v | y - β | < δ ⇒ | u(x, y) - l | < ε/2 v | v(x, y) - k | < ε/2 ⇒ ∀ z ∈ D, | z - a | < δ ⇒ | f(z) - L | < ε Suy ra lim f(z) = L z →a HÖ qu¶ lim f(z) = L ⇔ lim f (z) = L ⇒ lim | f(z) | = | L | 1. z →a z →a z →a lim [λf(z) + g(z)] = λ lim f(z) + lim g(z) 2. z →a z →a z →a lim [f(z)g(z)] = lim f(z) lim g(z), lim [f(z)/ g(z)] = lim f(z)/ lim g(z) z →a z →a z →a z →a z →a z →a 3. C¸c tÝnh chÊt kh¸c t−¬ng tù giíi h¹n h m biÕn thùc • H m f gäi l liªn tôc t¹i ®iÓm a ∈ D nÕu lim f(z) = f(a). H m f gäi l liªn tôc trªn miÒn z →a D nÕu nã liªn tôc t¹i mäi ®iÓm z ∈ D. H m f gäi l liªn tôc ®Òu trªn miÒn D nÕu ∀ ε > 0, ∃ δ > 0 : ∀ z, z’ ∈ D, | z - z’ | < δ ⇒ | f(z) - f(z’)| < ε Râ r ng h m f liªn tôc ®Òu trªn miÒn D th× nã liªn tôc trªn miÒn D. Tuy nhiªn ®iÒu ng−îc l¹i nãi chung l kh«ng ®óng. §Þnh lý Cho h m f liªn tôc trªn miÒn D compact. 1. H m | f(z) | bÞ chÆn trªn miÒn D v ∃ z1 , z2 ∈ D sao cho ∀ z ∈ D, | f(z1) | ≤ | f(z) | ≤ | f(z2) | 2. TËp f(D) l miÒn compact 3. H m f liªn tôc ®Òu trªn miÒn D 4. C¸c tÝnh chÊt kh¸c t−¬ng tù h m biÕn thùc liªn tôc Chøng minh 1. Do h m trÞ thùc | f(z) | = u 2 (x, y) + v 2 (x, y) liªn tôc trªn miÒn compact nªn bÞ chÆn v ®¹t trÞ lín nhÊt, trÞ bÐ nhÊt trªn miÒn ®ã. 2. Theo chøng minh trªn tËp f(D) l tËp giíi néi. XÐt d y wn = f(zn) → w0. Do miÒn D compact nªn cã d y con zϕ(n) → z0 ∈ D. +∞ +∞ Do h m f liªn tôc nªn f(zϕ(n)) → w0 = f(z0) ∈ f(D). Suy ra tËp f(D) l tËp ®ãng. +∞ XÐt cÆp hai ®iÓm w1 = f(z1), w2 = f(z2) ∈ f(D) tuú ý. Do tËp D liªn th«ng nªn cã tham sè Trang 24 Gi¸o Tr×nh To¸n Chuyªn §Ò
  7. Ch−¬ng 2. H m BiÕnPhøc cung γ(t) nèi z1 víi z2 v n»m gän trong D. Khi ®ã tham sè cung foγ(t) nèi w1 víi w2 v n»m gän trong f(D). Suy ra tËp f(D) l tËp liªn th«ng ®−êng. 3. Gi¶ sö ng−îc l¹i, h m f kh«ng liªn tôc ®Òu trªn tËp D. Khi ®ã ∃ ε > 0, ∀ δ = 1/ n, ∃ zn , zn’ ∈ D : | zn - zn’ | < 1/ n v | f(zn) - f(zn’) | ≥ ε Do miÒn D compact nªn cã c¸c d y con zϕ(n) → a v zψ(n)’ → b. +∞ +∞ Theo gi¶ thiÕt trªn ∃ N1 > 0 : ∀ n > N1, | a - b | < | a - zϕ(n) | + | zϕ(n) - zψ(n)’ | + | zψ(n)’ - b | < 1/ n Suy ra a = b. Do h m f liªn tôc nªn ∃ N2 ∈ ∠ : ∀ n > N2, | f(zϕ(n)) - f(zψ(n)’) | < ε Tr¸i víi gi¶ thiÕt ph¶n chøng. §3. §¹o h m phøc • Cho h m f : D → ∀, z α f(z) = u(x, y) + iv(x, y). H m f gäi l R - kh¶ vi nÕu phÇn thùc u = Ref v phÇn ¶o v = Imf l c¸c h m kh¶ vi. Khi ®ã ®¹i l−îng df = du + idv (2.3.1) gäi l vi ph©n cña h m phøc f. KÝ hiÖu dz = dx + idy v d z = dx - idy. BiÕn ®æi ∂u ∂v ∂u ∂v ∂f ∂f df = ( +i )dx + ( + i )dy = dx + i dy ∂x ∂x ∂y ∂y ∂x ∂y 1 ∂f ∂f 1 ∂f ∂f ∂f ∂f = ( - i )dz + ( + i )d z = dz + dz (2.3.2) 2 ∂x ∂y 2 ∂x ∂y ∂z ∂z H m f gäi l C - kh¶ vi nÕu nã l R - kh¶ vi v cã c¸c ®¹o h m riªng tho¶ m n ®iÒu kiÖn Cauchy - Riemann sau ®©y ∂f ∂u ∂v ∂u ∂v =0 ⇔ = v =- (C - R) ∂z ∂x ∂y ∂y ∂x VÝ dô Cho w = z = x - iy Ta cã u = x v v = -y l c¸c h m kh¶ vi nªn h m w l R - kh¶ vi Tuy nhiªn u ′ = 1 ≠ v ′y = -1 nªn h m w kh«ng ph¶i l C - kh¶ vi x • Cho h m f : D → ∀, a ∈ D v kÝ hiÖu ∆z = z - a, ∆f = f(z) - f(a). Giíi h¹n ∆f lim = f’(a) (2.3.3) ∆z →0 ∆z gäi l ®¹o h m cña h m f t¹i ®iÓm a. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 25
  8. Ch−¬ng 2. H m BiÕn Phøc Gi¶ sö h m f l R - kh¶ vi v ∆z = | ∆z |eiϕ , ∆ z = | ∆ z |e-iϕ. Theo c«ng thøc (2.3.2) ∂f ∂f ∆f = ∆z + ∆ z + o(∆z) ∂z ∂z Chia hai vÕ cho ∆z ∆f ∂f ∂f -2iϕ e + γ(∆z) víi γ(∆z) → 0 = + (2.3.4) ∆z ∂z ∂z Suy ra ®iÒu kiÖn cÇn v ®ñ ®Ó giíi h¹n (2.3.3) tån t¹i kh«ng phô thuéc v o ∆z l ∂f =0 ∂z Tøc l h m f l C - kh¶ vi. Tõ ®ã suy ra ®Þnh lý sau ®©y. §Þnh lý H m phøc f cã ®¹o h m khi v chØ khi nã l C - kh¶ vi. HÖ qu¶ NÕu h m f l C - kh¶ vi th× ∂u ∂v ∂u ∂u ∂v ∂u ∂v ∂v f’(z) = +i = -i = -i = +i (2.3.5) ∂x ∂x ∂x ∂y ∂y ∂y ∂y ∂x Chøng minh Gi¶ sö h m f l C - kh¶ vi. ChuyÓn qua giíi h¹n c«ng thøc (2.3.4) ∂f f’(z) = ∂z KÕt hîp víi c«ng thøc (2.3.2) v ®iÒu kiÖn (C - R) nhËn ®−îc c«ng thøc trªn. NhËn xÐt 1. NÕu c¸c h m u v v thuéc líp C1 th× h m f l R - kh¶ vi v nÕu c¸c ®¹o h m riªng tho¶ m n thªm ®iÒu kiÖn Cauchy - Riemann th× nã l C - kh¶ vi. Tuy nhiªn ®iÒu ng−îc l¹i nãi chung l kh«ng ®óng. 2. Tõ c«ng thøc (2.3.5) suy ra c¸c qui t¾c tÝnh ®¹o h m phøc t−¬ng tù nh− c¸c qui t¾c tÝnh ®¹o h m thùc. VÝ dô Cho w = z2 = (x2 - y2) + i(2xy) Ta cã u = x2 - y2 v v = 2xy l c¸c h m kh¶ vi v tho¶ m n ®iÒu kiÖn (C - R) u ′x = 2x = v ′y v u ′y = - 2y = - v ′x Suy ra h m w l C - kh¶ vi v theo c«ng thøc (2.3.5) w’ = u ′x + i v ′x = 2x + i2y = 2z Trang 26 Gi¸o Tr×nh To¸n Chuyªn §Ò
  9. Ch−¬ng 2. H m BiÕnPhøc §4. H m gi¶i tÝch • Cho h m f : D → ∀ v a ∈ D0. H m f gäi l gi¶i tÝch (chØnh h×nh) t¹i ®iÓm a nÕu cã sè d−¬ng R sao cho h m f cã ®¹o h m trong h×nh trßn B(a, R). H m f gäi l gi¶i tÝch trong miÒn më D nÕu nã gi¶i tÝch t¹i mäi ®iÓm trong miÒn D. Tr−êng hîp D kh«ng ph¶i miÒn më, h m f gäi l gi¶i tÝch trong miÒn D nÕu nã gi¶i tÝch trong miÒn më G v D ⊂ G. KÝ hiÖu H(D, ∀) l tËp c¸c h m gi¶i tÝch trªn miÒn D. §Þnh lý H m phøc gi¶i tÝch cã c¸c tÝnh chÊt sau ®©y. 1. Cho c¸c h m f, g ∈ H(D, ∀) v λ ∈ ∀. Khi ®ã λf + g, fg, f / g (g ≠ 0) ∈ H(D, ∀) [λf(z) + g(z)]’ = λf’(z) + g’(z) [f(z)g(z)]’ = f’(z)g(z) + f(z)g’(z) ′ f ′(z)g(z) − f (z)g ′(z)  f (z )   g( z )  = (2.4.1) g 2 (z)   2. Cho f ∈ H(D, ∀), g ∈ H(G, ∀) v f(D) ⊂ G. Khi ®ã h m hîp gof ∈ H(D, ∀) (gof)’(z) = g’(ω)f’(z) víi ω = f(z) (2.4.2) 3. Cho f ∈ H(D, ∀) v f’(z) ≠ 0. Khi ®ã h m ng−îc g ∈ H(G, ∀) víi G = f(D) 1 g’(w) = víi w = f(z) (2.4.3) f ′(z) Chøng minh 1. - 2. LËp luËn t−¬ng tù nh− chøng minh tÝnh chÊt cña ®¹o h m thùc 3. Gi¶ sö f(z) = u(x, y) + iv(x, y). Tõ gi¶ thiÕt suy ra c¸c h m u, v l kh¶ vi v tho¶ m n ®iÒu kiÖn (C - R). KÕt hîp víi c«ng thøc (2.3.5) ta cã u ′x u ′y = (u′ )2 + (v′ )2 = | f’(z) |2 ≠ 0 J(x, y) = v ′x v ′y x x Suy ra ¸nh x¹ f : (x, y) → (u, v) l mét vi ph«i (song ¸nh v kh¶ vi ®Þa ph−¬ng). Do ®ã nã cã ¸nh x¹ ng−îc g : (u, v) → (x, y) còng l mét vi ph«i. Tõ ®ã suy ra ∆g ∆f ∆w = ∆f → 0 ⇔ ∆z = ∆g → 0 v lim = lim ( )-1 = (f’(z))-1 ∆w →0 ∆w ∆z →0 ∆z • Gi¶ sö h m w = f(z) gi¶i tÝch t¹i ®iÓm a v cã ®¹o h m f’(a) ≠ 0. Gäi L : z = z(t) l ®−êng cong tr¬n ®i qua ®iÓm a v Γ : w = f[z(t)] = w(t) l ¶nh cña nã qua ¸nh x¹ f. Khi ®ã dz(t) l vi ph©n cung trªn ®−êng cong L v dw(t) l vi ph©n cung trªn ®−êng cong Γ. Theo c«ng thøc ®¹o h m h m hîp trong l©n cËn ®iÓm a, ta cã dw = f’(a)z’(t)dt = f’(a)dz Suy ra | dw | = | f’(a) || dz | v arg(dw) = arg(dz) + argf’(a) [2π] (2.4.4) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 27
  10. Ch−¬ng 2. H m BiÕn Phøc Nh− vËy | f’(a) | l hÖ sè co v argf’(a) l gãc quay cña ®−êng cong L bÊt kú trong l©n cËn ®iÓm a. Suy ra trong l©n cËn cña ®iÓm a phÐp biÕn h×nh w = f(z) l phÐp ®ång d¹ng. z(t) w(t) dz dw argdz argdw (z) (w) a b • PhÐp biÕn h×nh b¶o to n gãc gi÷a hai ®−êng cong gäi l phÐp biÕn h×nh b¶o gi¸c. Theo kÕt qu¶ trªn th× h m gi¶i tÝch v cã ®¹o h m kh¸c kh«ng l mét phÐp biÕn h×nh b¶o gi¸c. Ng−îc l¹i gi¶ sö ¸nh x¹ f l R - kh¶ vi v b¶o gi¸c t¹i ®iÓm a. Qua ¸nh x¹ f c¬ së chÝnh ∂∂ ∂f ∂f t¾c ( , ) biÕn th nh cÆp vect¬ tiÕp xóc ( , ). ∂x ∂y ∂x ∂y Do tÝnh b¶o gi¸c ∂f ∂f ∂∂ π ∠( ) = ∠( , , )= ∂x ∂y ∂x ∂y 2 Suy ra π ∂f ∂u ∂v ∂f ∂u ∂v ∂f i )⇔ = +i =e2 = i( +i =0 ∂y ∂y ∂y ∂x ∂x ∂x ∂z §iÒu n y cã nghÜa l h m R - kh¶ vi v biÕn h×nh b¶o gi¸c l h m C - kh¶ vi. Chóng ta sÏ quay l¹i vÊn ®Ò biÕn h×nh b¶o gi¸c ë cuèi ch−¬ng n y. §5. H m luü thõa H m luü thõa phøc • H m luü thõa phøc w = zn, z ∈ ∀ (2.5.1) l h m gi¶i tÝch trªn to n tËp sè phøc, cã ®¹o h m w’(z) = nzn-1 (2.5.2) v cã c¸c tÝnh chÊt t−¬ng tù h m luü thõa thùc. • H m luü thõa phøc l h m ®a diÖp zn = z 1 ⇔ | z | = | z1 | v argz = argz1 [ 2π ] n (2.5.3) n Suy ra miÒn ®¬n diÖp l h×nh qu¹t α < argz < α + 2π . n Trang 28 Gi¸o Tr×nh To¸n Chuyªn §Ò
  11. Ch−¬ng 2. H m BiÕnPhøc KÝ hiÖu z = reiϕ suy ra w = rneinϕ. argz= 2nπ argw=2π argz=0 argz=0 Qua ¸nh x¹ luü thõa phøc argz = α argw = nα Tia biÕn th nh tia 0 < argz < 2π 0 < argw < 2π Gãc biÕn th nh gãc n Mét mÆt ph¼ng (z) biÕn th nh n - mÆt ph¼ng (w) H m c¨n phøc • H m c¨n phøc w = n z ⇔ z = wn (2.5.4) l h m ng−îc cña h m luü thõa phøc. Do h m luü thõa phøc l n - diÖp nªn h m c¨n phøc l h m n - trÞ. KÝ hiÖu z = reiϕ v w = ρeiθ , ta cã ϕ ρ = n r , θ = + k 2 π víi k = 0...(n-1) (2.5.5) n n Γ1 Γ0 w1 w0 z0 L Γ2 w2 Khi z ch¹y trªn ®−êng cong L kÝn, kh«ng bao gèc to¹ ®é th× w ch¹y ®ång thêi trªn c¸c ®−êng cong Γk kÝn, kh«ng bao gèc to¹ ®é. Khi z ch¹y trªn ®−êng cong L kÝn, bao gèc to¹ ®é th× w ch¹y ®ång thêi trªn c¸c cung wkwk+1 tõ ®iÓm wk ®Õn ®iÓm wk+1. Khi z ch¹y hÕt mét vßng bao gèc to¹ ®é th× w nh¶y tõ nh¸nh ®¬n trÞ n y sang nh¸nh kh¸c. Do vËy ®iÓm gèc gäi l ®iÓm rÏ nh¸nh cña h m c¨n phøc v ®Ó t¸ch c¸c nh¸nh ®¬n trÞ ng−êi ta th−êng c¾t mÆt ph¼ng phøc b»ng mét tia tõ 0 ra ∞. • MiÒn ®¬n trÞ cña h m c¨n phøc l D = ∀ - (-∞, 0]. Víi k = 0, h m ϕ i n w = re (2.5.6) n l h m ®¬n diÖp, gi¶i tÝch trªn miÒn D, cã ®¹o h m w’(z) = 1 z n −1 1 (2.5.7) n v cã c¸c tÝnh chÊt kh¸c t−¬ng tù h m c¨n thùc. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 29
  12. Ch−¬ng 2. H m BiÕn Phøc §6. H m mò H m mò phøc • H m mò phøc w = ez = ex(cosy + isiny), z ∈ ∀ (2.6.1) x x cã phÇn thùc u = e cosy v phÇn ¶o v = e siny tho¶ ®iÒu kiÖn (C - R) nªn gi¶i tÝch trªn to n tËp sè phøc, cã ®¹o h m w’(z) = ez (2.6.2) H m mò phøc tuÇn ho n chu kú T = 2πi ez+i2π = ez v cã c¸c tÝnh chÊt kh¸c t−¬ng tù nh− h m mò thùc. • H m mò phøc l h m ®a diÖp e z = e z1 ⇔ Rez = Rez1 v Imz = Imz1 [2π] (2.6.3) Suy ra miÒn ®¬n diÖp l b¨ng ®øng α < Imz < α + 2π. KÝ hiÖu z = x + iy suy ra | w | = ex v Argw = y + k2π. Imz=2π argw=0 argw=2π Imz=0 Qua ¸nh x¹ mò phøc y=β argw = β §−êng th¼ng biÕn th nh tia 0 < Imz < 2π 0 < argw < 2π B¨ng ngang biÕn th nh gãc ∞ - mÆt ph¼ng (w) Mét mÆt ph¼ng (z) biÕn th nh H m logarit phøc • H m logarit phøc w = Ln z ⇔ z = ew (2.6.4) l h m ng−îc cña h m mò phøc. Do h m mò phøc l h m ®a diÖp nªn h m logarit phøc l h m ®a trÞ. Gi¶ sö w = u + iv, ta cã eu = | z | v v = argz + k2π víi k ∈ 9 Suy ra w = ln| z | + i(argz + k2π) víi k ∈ 9 (2.6.5) LËp luËn t−¬ng tù nh− h m c¨n phøc, ®iÓm gèc l ®iÓm rÏ nh¸nh cña h m logarit v ®Ó t¸ch nh¸nh ®¬n trÞ cÇn ph¶i c¾t mÆt ph¼ng phøc b»ng mét tia tõ 0 ra ∞. Trang 30 Gi¸o Tr×nh To¸n Chuyªn §Ò
  13. Ch−¬ng 2. H m BiÕnPhøc • MiÒn ®¬n trÞ cña h m logarit phøc l D = ∀ - (-∞, 0]. Víi k = 0, h m w = ln| z | + iargz (2.6.6) l h m ®¬n trÞ, gi¶i tÝch trªn miÒn D, cã ®¹o h m w’(z) = 1 (2.6.7) z v cã c¸c tÝnh chÊt kh¸c t−¬ng tù h m logarit thùc. π 1 1 ln i VÝ dô Ln(-1) = ln| -1 | + iarg(-1) = iπ, i =e =e i i 2 §7. H m l−îng gi¸c H m l−îng gi¸c phøc • KÝ hiÖu cosz = 1 (e iz + e −iz ) sinz = 1 (e iz − e −iz ) tgz = sin z (2.7.1) 2 2i cos z C¸c h m biÕn phøc w = cosz, w = sinz v w = tgz gäi l c¸c h m l−îng gi¸c phøc. H m l−îng gi¸c phøc ®¬n trÞ, tuÇn ho n, gi¶i tÝch, cã ®¹o h m (cosz)’ = - sinz (sinz)’ = cosz, ... (2.7.2) v cã c¸c tÝnh chÊt kh¸c t−¬ng tù h m l−îng gi¸c thùc. 1 ix 1 Chó ý Víi z = x ∈ 3, cosz = (e + e-ix) ≡ cosx. Tuy nhiªn cos(i) = (e-1 + e) > 1 2 2 H m hyperbole phøc • KÝ hiÖu chz = 1 (e z + e − z ) shz = 1 (e z − e −z ) thz = shz (2.7.3) 2 2 chz C¸c h m biÕn phøc w = chz, w = shz v w = thz gäi l c¸c h m hyperbole phøc. H m hyperbole phøc ®¬n trÞ, tuÇn ho n, gi¶i tÝch, cã ®¹o h m (chz)’ = shz (shz)’ = chz, ... (2.7.4) v cã c¸c tÝnh chÊt kh¸c t−¬ng tù h m hyperbole thùc. • Ngo i ra, ta cã c¸c liªn hÖ gi÷a h m l−îng gi¸c v h m hyperbole chiz = cosz cosiz = chz shiz = isinz siniz = ishz (2.7.5) VÝ dô T×m ¶nh cña miÒn - π < Rez < π qua ¸nh x¹ w = sinz 2 2 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 31
  14. Ch−¬ng 2. H m BiÕn Phøc Ta cã w = sin(x + iy) = sinxcosiy + cosxsiniy = sinxchy + icosxshy Suy ra u = sinxchy v v = cosxshy α π/2 π/2 1 -1 Qua ¸nh x¹ w = sin z x=±π u = ±chy, v = 0 §−êng th¼ng biÕn th nh tia 2 x=α u = sinαchy, v = cosαshy §−êng th¼ng biÕn th nh hyperbole - π < Rez < π (w) - (-∞, -1] ∪ [1, +∞) MiÒn biÕn th nh miÒn 2 2 • LËp luËn t−¬ng tù t×m ¶nh c¸c h m l−îng gi¸c, h m hyperbole kh¸c. §8. BiÕn h×nh b¶o gi¸c • ¸nh x¹ f : D → ∀ gäi l biÕn h×nh b¶o gi¸c t¹i ®iÓm a nÕu nã b¶o to n gãc ®Þnh h−íng gi÷a c¸c ®−êng cong ®i qua ®iÓm a. Anh x¹ f gäi l phÐp biÕn h×nh b¶o gi¸c trªn miÒn D nÕu nã l ®¬n diÖp v b¶o gi¸c t¹i mäi ®iÓm thuéc D. α α a b Theo c¸c kÕt qu¶ ë trªn h m gi¶i tÝch v cã ®¹o h m kh¸c kh«ng t¹i ®iÓm a l mét song ¸nh, R - kh¶ vi v b¶o gi¸c trong l©n cËn ®iÓm a, gäi l mét vi ph«i b¶o gi¸c. Ng−îc l¹i mét vi ph«i b¶o gi¸c t¹i ®iÓm a l h m gi¶i tÝch v cã ®¹o h m kh¸c kh«ng t¹i ®iÓm a. B i to¸n T×m phÐp biÕn h×nh b¶o gi¸c f biÕn miÒn ®¬n liªn D th nh miÒn ®¬n liªn G. • §Ó gi¶i b i to¸n trªn ng−êi ta th−êng sö dông c¸c kÕt qu¶ d−íi ®©y, gäi l c¸c nguyªn lý biÕn h×nh b¶o gi¸c. ViÖc chøng minh c¸c nguyªn lý biÕn h×nh b¶o gi¸c l rÊt phøc t¹p v ph¶i sö dông nhiÒu kÕt qu¶ kh¸c. ¥ ®©y chóng ta chØ tr×nh b y s¬ l−îc c¸c ý t−ëng cña c¸c phÐp chøng minh. B¹n ®äc quan t©m ®Õn c¸c phÐp chøng minh chi tiÕt cã thÓ t×m xem ë phÇn t i liÖu tham kh¶o. Trang 32 Gi¸o Tr×nh To¸n Chuyªn §Ò
  15. Ch−¬ng 2. H m BiÕnPhøc Nguyªn lý tån t¹i Cho D v G l c¸c miÒn ®¬n liªn giíi néi. Khi ®ã tån t¹i v« sè h m gi¶i tÝch w = f(z) biÕn h×nh b¶o gi¸c miÒn D th nh miÒn G. PhÐp biÕn h×nh ®−îc x¸c ®Þnh duy nhÊt nÕu cã thªm mét trong hai ®iÒu kiÖn sau ®©y. 1. Cho biÕt w0 = f(z0) v w1 = f(z1) víi z0 ∈ D0 v z1 ∈ ∂D 2. Cho biÕt w0 = f(z0) v arg f’(z0) = α víi z0 ∈ D0 Chøng minh • KÝ hiÖu U = { z ∈ ∀ : | z | < 1}, S = { g ∈ H(D, ∀) : ∀ z ∈ D, | g(z) | < 1} v a ∈ D Ta c«ng nhËn ∃ fa ∈ S sao cho | fa(a) | = Max | g(a) | g∈S Khi ®ã h m gi¶i tÝch fa l phÐp biÕn h×nh b¶o gi¸c biÕn miÒn D th nh miÒn U. Cã thÓ t×m ®−îc v« sè h m gi¶i tÝch f : D → U nh− vËy. Tuy nhiªn ta cã liªn hÖ z−a f = fa o h víi h : U → U, h(z) = eiα , h(a) = 0 1 − az Tõ ®ã suy ra nÕu cã thªm c¸c ®iÒu kiÖn bæ sung th× cã thÓ x¸c ®Þnh duy nhÊt h m f. • Gi¶ sö f : D → U v g : G → U l c¸c phÐp biÕn h×nh b¶o gi¸c. Khi ®ã g-1of : D → G l phÐp biÕn h×nh b¶o gi¸c biÕn miÒn D th nh miÒn G. Nguyªn lý b¶o to n miÒn Cho D l miÒn ®¬n liªn giíi néi, h m f : D → ∀ liªn tôc trªn D , gi¶i tÝch trong D v kh«ng ph¶i l h m h»ng. Khi ®ã G = f(D) còng l miÒn ®¬n liªn. Chøng minh • Do h m f liªn tôc nªn b¶o to n ®−êng cong suy ra b¶o to n tÝnh liªn th«ng • Víi mäi b = f(a) ∈ G, do miÒn D më v f ≠ const nªn cã h×nh trßn B(a, R) ⊂ D sao cho víi mäi z ∈ B(a, R), f(z) ≠ b. KÝ hiÖu µ = Min | f(z) - b | víi Γ = ∂B z∈Γ NB[f(z) - b] l sè kh«ng ®iÓm cña h m f(z) - b trong h×nh trßn B(a, R) Víi w ∈ B(b, µ) tuú ý, ta cã f(z) - w = f(z) - b + b - w v | f(z) - b | > µ > | b - w| víi z ∈ B(a, R) Theo ®Þnh lý RouchÐ (§8, ch−¬ng 4) NB[f(z) - w] = NB[f(z) - b] = 1 Do ®ã ∃ z ∈ B(a, R) sao cho w = f(z) ∈ G. V× ®iÓm w tuú ý nªn B(b, µ) ⊂ G v suy ra tËp G l tËp më Nguyªn lý t−¬ng øng biªn Cho D, G l c¸c miÒn ®¬n liªn giíi néi, h m f : D → ∀ liªn tôc trªn D , gi¶i tÝch trong D v biÕn h×nh b¶o gi¸c ∂D+ th nh ∂G+. Khi ®ã h m f biÕn h×nh b¶o gi¸c miÒn D th nh miÒn G. Chøng minh Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 33
  16. Ch−¬ng 2. H m BiÕn Phøc • Víi mäi b ∈ G, kÝ hiÖu ∆Γ[f(z) - b] l sè gia argument cña h m f(z) - b khi z ch¹y trªn ®−êng cong Γ. Theo nguyªn lý argument (§8, ch−¬ng 4) 1 1 ∆∂D[f(z) - b] = ∆∂G(w - b) = 1 ND[f(z) - b] = 2π 2π Do ®ã ∃ a ∈ D sao cho b = f(a). LËp luËn t−¬ng tù víi b ∉ G 1 1 ∆∂D[f(z) - b] = ∆∂G(w - b) = 0 ND[f(z) - b] = 2π 2π Suy ra h m f biÕn h×nh b¶o gi¸c miÒn D th nh miÒn G. Nguyªn lý ®èi xøng Cho c¸c miÒn ®¬n liªn giíi néi D1 ®èi xøng víi D2 qua ®o¹n th¼ng hoÆc cung trßn L ⊂ ∂D1 ∩ ∂D2 v h m f1 : D1 → ∀ liªn tôc trªn D 1 , gi¶i tÝch trong D1, biÕn h×nh b¶o gi¸c miÒn D1 th nh miÒn G1 sao cho cung L+ th nh cung Γ+ ⊂ ∂G1. Khi ®ã cã h m gi¶i tÝch f : D1 ∪ D2 → ∀ biÕn h×nh b¶o gi¸c miÒn D1 ∪ D2 th nh miÒn G1 ∪ G2 víi G2 l miÒn ®èi xøng víi G1 qua cung Γ. Chøng minh • XÐt tr−êng hîp L v Γ l c¸c ®o¹n th¼ng n»m trªn trôc thùc. Khi ®ã h m f2 : D2 → ∀, z α f2(z) = f1 ( z ) v f2(z) = f1(z), ∀ z ∈ L l h m gi¶i tÝch biÕn h×nh b¶o gi¸c miÒn D2 th nh miÒn G2. H m f x¸c ®Þnh nh− sau f : D1 ∪ D2 → ∀, f(z) = f1(z), z ∈ D1 ∪ L v f(z) = f2(z), z ∈ D2 l h m gi¶i tÝch biÕn h×nh b¶o gi¸c miÒn D1 ∪ D2 th nh miÒn G1 ∪ G2. • Tr−êng hîp tæng qu¸t, chóng ta dïng h m gi¶i tÝch biÕn c¸c cung L v Γ th nh c¸c ®o¹n th¼ng n»m trªn trôc thùc. §9. H m tuyÕn tÝnh v h m nghÞch ®¶o H m tuyÕn tÝnh • H m tuyÕn tÝnh w = az + b (a ≠ 0) (2.9.1) l h m gi¶i tÝch, cã ®¹o h m w’(z) = a ≠ 0 v do ®ã biÕn h×nh b¶o gi¸c mÆt ph¼ng (z) lªn mÆt ph¼ng (w). • KÝ hiÖu λ = | a | v α = arg(a). Ph©n tÝch w = λeiα z + b (2.9.2) Suy ra phÐp biÕn h×nh tuyÕn tÝnh l tÝch cña c¸c phÐp biÕn h×nh sau ®©y. Trang 34 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
9=>0