intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Toán học phần 5

Chia sẻ: Phuoc Hau Phuoc Hau | Ngày: | Loại File: PDF | Số trang:16

60
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chuỗi Hàm Phức V Thặng D− Với mọi ζ ∈ Γ2 : | ζ - a | = R, ta có q = | z - a | / | ζ - a |

Chủ đề:
Lưu

Nội dung Text: Giáo trình Toán học phần 5

  1. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− Víi mäi ζ ∈ Γ2 : | ζ - a | = R, ta cã q = | z - a | / | ζ - a | < 1 suy ra khai triÓn n n 1 z−a f (ζ ) f (ζ )  z − a  +∞ +∞ 1 1 1 ∑ ζ −a ζ −a v ζ − z = ∑ζ −a ζ −a = = (3)     z−a ζ−z ζ−a     1− n =0 n =0 ζ−a Do h m f liªn tôc trªn D nªn cã module bÞ chÆn suy ra chuçi (2) héi tô ®Òu trªn Γ1 v chuçi (3) héi tô ®Òu trªn Γ2. Ngo i ra theo ®Þnh lý Cauchy f (ζ ) f (ζ ) f (ζ ) ∫ (ζ − a) n dζ = ∫ (ζ − a) n dζ = Γ∫ (ζ − a ) n dζ Γ Γ1 2 TÝch ph©n tõng tõ c«ng thøc (1) suy ra c«ng thøc (4.5.1) • Ng−êi ta th−êng viÕt chuçi Laurent d−íi d¹ng +∞ +∞ +∞ c −n c n (z − a ) n = ∑ ∑ + ∑ c n (z − a ) n (4.5.2) n =1 ( z − a ) n n =0 −∞ PhÇn luü thõa d−¬ng gäi l phÇn ®Òu, phÇn luü thõa ©m gäi l phÇn chÝnh. NÕu h m f gi¶i tÝch trong c¶ h×nh trßn B(a, R) th× ∀ n ≥ 1, c-n = 0. Khi ®ã chuçi Laurent (4.5.1) trë th nh chuçi Taylor (4.3.1) VÝ dô 1 trªn miÒn D ={ 1 < | z | < 2} 1. Khai triÓn h m f(z) = (z − 1)(z − 2) 1 1 1 1 1 1 1 1 (1 + ... + n zn + ...) - (1 + ... + n + ...) f(z) = - - =- z 1 2 2 z z z 2 1− 1− 2 z 2. Khai triÓn h m f(z) = sin z th nh chuçi t©m t¹i a = 1 z −1 f(z) = sin1cos 1 + cos1sin 1 z −1 z −1 sin 1 = 1 − 1 cos 1 = 1 − 1 1 + ... v 1 + ... z − 1 z − 1 3! (z − 1) 3 z −1 2! (z − 1) 2 §6. Ph©n lo¹i ®iÓm bÊt th−êng • §iÓm a gäi l ®iÓm bÊt th−êng nÕu h m f kh«ng gi¶i tÝch t¹i a. NÕu ∃ ε > 0 sao cho h m f gi¶i tÝch trong B(a, ε) - {a} th× ®iÓm a gäi l ®iÓm bÊt th−êng c« lËp. Cã thÓ ph©n lo¹i c¸c ®iÓm bÊt th−êng c« lËp nh− sau. NÕu lim f (z ) = L th× ®iÓm a gäi l bÊt th−êng z →a Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 67
  2. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− bá qua ®−îc. NÕu lim f (z ) = ∞ th× ®iÓm a gäi l cùc ®iÓm. NÕu lim f (z ) kh«ng tån t¹i th× z →a z →a ®iÓm a gäi l bÊt th−êng cèt yÕu. Gi¶ sö trong l©n cËn ®iÓm a bÊt th−êng c« lËp, h m f cã khai triÓn Laurent +∞ +∞ c -n f(z) = ∑ + ∑ c n (z − a ) n (4.6.1) n =1 ( z − a ) n n =0 §Þnh lý KÝ hiÖu m(a) = min{ n ∈ 9 : cn ≠ 0 } 1. §iÓm a l bÊt th−êng bá qua ®−îc khi v chØ khi m(a) ≥ 0 2. §iÓm a l cùc ®iÓm cÊp m khi v chØ khi m(a) < 0 3. §iÓm a l bÊt th−êng cèt yÕu khi v chØ khi m(a) = -∞ Chøng minh +∞ ∑c 1. m(a) = m ≥ 0 ⇒ f(z) = (z − a ) n a → c0 = L  z→ n n =0 Ng−îc l¹i, h m g(z) = f (z) z ≠ 0 gi¶i tÝch trong B(a, ε). Khai triÓn Taylor t¹i ®iÓm a L z=0  +∞ ∑c (z − a ) n víi c0 = L ⇒ m(a) ≥ 0 g(z) = n n =0 +∞ c -n m ∑ (z − a ) ∑c (z − a ) n a → ∞  2. m(a) = -m < 0 ⇒ f(z) = + z→ n n n =1 n =1 1 z≠a  gi¶i tÝch trong B(a, ε) v g(a) = 0. Ng−îc l¹i, h m g(z) =  f (z) 0 z=a  Theo hÖ qu¶ 3, §4 g(z) = (z - a)mh(z) víi m ∈ ∠* v h l h m gi¶i tÝch trong B(a, ε), h(a) ≠ 0 Suy ra +∞ 1 1 1 m∑ n b (z − a ) n víi c-m = b0 ≠ 0 ⇒ m(a) = -m f(z) = = ( z − a ) n =0 ( z − a ) h( z ) m +∞ +∞ c −n ∑ (z − a ) ∑c 3. m(a) = -∞ ⇒ f(z) = (z − a ) n kh«ng cã giíi h¹n khi z → a + n n n =1 n =0 Ng−îc l¹i, ph¶n chøng trªn c¬ së 1. v 2. HÖ qu¶ 1 (§Þnh lý Sokhotsky) §iÓm a l ®iÓm bÊt th−êng cèt yÕu cña h m f khi v chØ khi víi mäi sè phøc A cã d y sè phøc (zn)n∈∠ héi tô ®Õn a sao cho d y sè phøc (f(zn))n∈∠ héi tô ®Õn A. Tøc l tËp f(B(a, ε)) trï mËt trong tËp ∀. • H m f gi¶i tÝch trªn to n tËp sè phøc gäi l h m nguyªn. Nh− vËy h m nguyªn chØ cã 1 mét ®iÓm bÊt th−êng duy nhÊt l z = ∞. §æi biÕn ζ = suy ra h m g(ζ) = f(z) cã duy z Trang 68 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− nhÊt ®iÓm bÊt th−êng c« lËp l ζ = 0. Khai triÓn Laurent h m g(ζ) trong l©n cËn ζ = 0 +∞ +∞ +∞ +∞ c c g(ζ) = ∑ −nn + c0 + ∑ c n ζ n = ∑ c − n z n + c0 + ∑ n (4.6.2) n =1 ζ n n =1 z n =1 n =1 f(z) 0→ f(a) nªn ∀ n ≥ 1, cn = 0  Do Tõ ®ã suy ra kÕt qu¶ sau ®©y. HÖ qu¶ 2 KÝ hiÖu mf(∞) = - mg(0) 1. H m f l h m h»ng khi v chi khi m(∞) = 0 2. H m f l ®a thøc bËc n khi v chi khi m(∞) = n 3. H m f l h m siªu viÖt khi v chi khi m(∞) = +∞ • H m f(z) gäi l h m ph©n h×nh nÕu nã chØ cã h÷u h¹n cùc ®iÓm trªn tËp ∀ HÖ qu¶ 3 H m f(z) l h m ph©n h×nh khi v chØ khi h m f(z) l ph©n thøc h÷u tû Chøng minh P(z ) Râ r ng h m h÷u tû f(z) = cã h÷u h¹n cùc ®iÓm l c¸c kh«ng ®iÓm cña Q(z) Q( z ) Ng−îc l¹i, gi¶ sö h m f(z) cã m cùc ®iÓm trªn ∀. Khi ®ã h(z ) f(z) = (z − z 1 )..(z − z m ) víi h m h gi¶i tÝch trªn to n ∀ v mh(∞) = n suy ra h(z) = P(z) §7. ThÆng d− • Cho h m f gi¶i tÝch trong B(a, R) - {a}, liªn tôc trªn Γ = ∂B(a, R). TÝch ph©n Resf(a) = 1 ∫ f (z)dz (4.7.1) 2 πi Γ gäi l thÆng d− cña h m f t¹i ®iÓm a. Theo ®Þnh lý Cauchy, nÕu a l ®iÓm th−êng cña h m f th× Resf(a) = 0. NÕu a l ®iÓm bÊt th−êng c« lËp th× Resf(a) kh«ng phô thuéc v o ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, bao ®iÓm a, ®Þnh h−íng d−¬ng v n»m gän trong h×nh trßn B(a, R). Cho h m f gi¶i tÝch trong miÒn R < | z | < ∞, liªn tôc trªn Γ = ∂B(0, R). TÝch ph©n 1 2πi Γ∫− Resf(∞) = f (z)dz (4.7.2) gäi l thÆng d− cña h m f t¹i ®iÓm ∞. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 69
  4. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− §Þnh lý Th¨ng d− cña h m f t¹i ®iÓm a l hÖ sè c-1 cña khai triÓn Laurent t¹i ®iÓm ®ã. Resf(a) = c-1 (4.7.3) Chøng minh Khai triÓn Laurent h m f t¹i ®iÓm a f (ζ ) +∞ +∞ c −n 1 f(z) = ∑ + ∑ c n (z − a ) n víi cn = ∫ (ζ − a ) n +1 dζ , n ∈9 2 πi Γ n =1 ( z − a ) n n =0 So s¸nh víi c«ng thøc (4.7.1) suy ra c«ng thøc (4.7.3) HÖ qu¶ Cho ®iÓm a l cùc ®iÓm cÊp m cña h m f 1 lim d ( m −1) [(z − a ) m f (z)] Resf(a) = (4.7.4) (m − 1)! z →a dz ( m −1) Chøng minh Khai triÓn Laurent t¹i cùc ®iÓm a cÊp m +∞ c −m c + ... + −1 + ∑ c n (z − a ) n f(z) = z−a (z − a ) m n =0 Suy ra (z - a)mf(z) = c-m + ... + c-1(z - a)m-1 + c0(z - a)m + .... [(z - a)mf(z)](m-1) = (m - 1)!c-1 + m(m-1)..2c0(z - a) + ... ChuyÓn qua giíi h¹n hai vÕ lim [(z - a)mf(z)](m-1) = (m - 1)!c-1 z →a ez cã hai cùc ®iÓm cÊp 3 l ±i VÝ dô H m f(z) = (z 2 + 1) 3 ″ 1  ez 12e z   e2  6e z 1 1i − + =   (z + i ) 3 (z + i ) 4 (z + i ) 5  = 16 e (3 - 2i) Resf(i) = lim   (z + i) 3  2 2! z →i   z =i  §Þnh lý Cho h m f cã c¸c cùc ®iÓm h÷u h¹n l ak víi k = 1...n n ∑ Re sf (a ) + Resf(∞) = 0 (4.7.5) k k =1 Chøng minh Gäi Γk víi k = 1...n l c¸c ®−êng trßn | z - ak | = Rk ®ñ bÐ ®Ó chØ bao riªng tõng ®iÓm ak v Γ l ®−êng trßn | z | = R ®ñ lín ®Ó bao hÕt tÊt c¶ c¸c ®−êng trßn Γk. Theo c«ng thøc tÝch ph©n Cauchy n ∑ ∫ f (z)dz ∫ f (z)dz = ∫ f (z)dz =- k =1 Γk Γ− Γ ChuyÓn vÕ sau ®ã chia hai vÕ cho 2πi suy ra c«ng thøc (4.7.5) Trang 70 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− HÖ qu¶ Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v h m f liªn tôc trªn Γ, gi¶i tÝch trong DΓ ngo¹i trõ h÷u h¹n cùc ®iÓm ak ∈ DΓ víi k = 1...n n ∫ f (z)dz = 2πi ∑ Re sf (a k ) (4.7.6) k =1 Γ sin zdz ∫ (z víi Γ l ®−êng trßn | z | = 2 ®Þnh h−íng d−¬ng VÝ dô TÝnh I = + 1)(z + 3) 2 Γ H m f(z) cã hai cùc ®iÓm z = ±i n»m trong miÒn DΓ v mét cùc ®iÓm z = -3 n»m ngo i miÒn DΓ. sin( −i ) sin z Resf(-i) = lim = z → − i ( z − i )( z − 3) − 2 + 6i i sin(i ) -3 Resf(i) = lim = -i (z + i )(z − 3) − 2 − 6i z →i 3 I = 2πi[Resf(-i) + Resf(i)] = - sin(i) 5 §8. ThÆng d− Loga • Cho h m f gi¶i tÝch v kh¸c kh«ng trong B(a, R) - {a}, liªn tôc trªn Γ = ∂B(a, R). TÝch ph©n 1 f ′(z ) 2 πi ∫ f (z ) ResLnf(a) = dz (4.8.1) Γ gäi l thÆng d− loga cña h m f t¹i ®iÓm a. Theo ®Þnh nghÜa trªn f ′(z) víi z ∈ B(a, R) - {a} ResLnf(a) = Resg(a) trong ®ã g(z) = [Ln f(z)]’ = f (z) §Þnh lý Víi c¸c kÝ hiÖu nh− trªn 1. NÕu a l kh«ng ®iÓm cÊp n cña h m th× ResLnf(a) = n 2. NÕu b l cùc ®iÓm cÊp m cña h m f th× ResLnf(b) = -m Chøng minh 1. Theo hÖ qu¶ 3, §4 ∀ z ∈ B(a, R), f(z) = (z - a)nh(z) víi h(z) l h m gi¶i tÝch trong B(a, R) v h(a) ≠ 0 §¹o h m h m f suy ra f’(z) = n(z - a)n-1h(z) + (z - a)nh(z) h ′(z) h ′(z) n g(z) = + víi l h m gi¶i tÝch trong B(a, R) z−a h( z ) h( z ) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 71
  6. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− Suy ra ResLnf(a) = c-1(g) = n 2. Theo hÖ qu¶ 3, §5 h( z ) ∀ z ∈ B(a, R), f(z) = víi h(z) l h m gi¶i tÝch trong B(a, R) v h(a) ≠ 0 (z − a ) m §¹o h m h m f suy ra −m 1 f’(z) = h(z) + h’(z) m +1 (z − a ) (z − a ) m h ′(z) h ′(z) −m g(z) = + víi l h m gi¶i tÝch trong B(a, R) z−a h( z ) h( z ) Suy ra ResLnf(a) = c-1(g) = -m HÖ qu¶ 1 Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v h m f liªn tôc trªn Γ, cã c¸c kh«ng ®iÓm ak cÊp nk víi k = 1...p v gi¶i tÝch trong DΓ ngo¹i trõ c¸c cùc ®iÓm bj cÊp mj víi j = 1...q 1 f ′(z) p q ∑ nk − ∑ mj = N - M 2 πi ∫ f (z) dz = (4.8.2) k =1 j =1 Γ Chøng minh KÕt hîp ®Þnh lý trªn, c«ng thøc tÝch ph©n Cauchy v lËp luËn t−¬ng tù hÖ qu¶ 1, §7 • Ta xem mét kh«ng ®iÓm cÊp n l n kh«ng ®iÓm ®¬n trïng nhau v mét cùc ®iÓm cÊp m l m cùc ®iÓm ®¬n trïng nhau. Theo c«ng thøc Newtown - Leibniz v ®Þnh nghÜa h m logarit phøc f ′(z) ∫ f (z) dz = ∫ d[ln f (z)] = ∆ΓLnf(z) = ∆Γln| f(z) | + i∆ΓArgf(z) = i∆ΓArgf(z) Γ Γ KÕt hîp víi c«ng thøc (4.8.2) suy ra hÖ qu¶ sau ®©y. HÖ qu¶ 2 (Nguyªn lý Argument) Sè gia cña argument cña h m f khi z ch¹y hÕt mét vßng trªn ®−êng cong Γ kÝn, tr¬n tõng khóc v ®Þnh h−íng d−¬ng b»ng 2π nh©n víi hiÖu sè cña sè kh«ng ®iÓm trõ ®i sè cùc ®iÓm cña h m f n»m trong miÒn DΓ. Tøc l ∆ΓArgf(z) = 2π(N - M) (4.8.3) HÖ qu¶ 3 (§Þnh lý RouchÐ) Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v c¸c h m f , g liªn tôc trªn Γ, gi¶i tÝch trong DΓ. KÝ hiÖu NΓ(f) l sè kh«ng ®iÓm cña h m f n»m trong DΓ. Khi ®ã nÕu ∀ z ∈ Γ, | f(z) | > | g(z) | th× NΓ(f + g) = NΓ(f). Chøng minh Trang 72 Gi¸o Tr×nh To¸n Chuyªn §Ò
  7. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− g( z ) g( z ) ∀ z ∈ Γ, < 1 ⇒ ∆ΓArg(1 + Theo gi¶ thiÕt )=0 f (z ) f (z) Suy ra f (z) 1+ 1 ∆ΓArg[f(z) + g(z)] g( z ) NΓ(f + g) = 2π g( z ) 1 1 ∆ΓArg[f(z)(1 + = )] 2π f (z) g( z ) 1 1 ∆ΓArgf(z) + ∆ΓArg(1 + = ) = NΓ(f) 2π 2π f (z) HÖ qu¶ 4 (§Þnh lý D’Alembert - Gauss) Mäi ®a thøc hÖ sè phøc bËc n cã ®óng n kh«ng ®iÓm phøc trong ®ã kh«ng ®iÓm béi k tÝnh l k kh«ng ®iÓm. Chøng minh Gi¶ sö P(z) = a0 + a1z + ... + zn víi ak ∈ ∀ KÝ hiÖu f(z) = zn, g(z) = a0 + ... + an-1zn-1, M = Max{| ak | , k = 0...(n-1)} v R = nM + 1 Trªn ®−êng trßn Γ : | z | = R | g(z) | ≤ M(1 + ... + Rn-1) ≤ nMRn-1 < Rn = | f(z) | Theo hÖ qu¶ 3 NΓ(P) = NΓ(f + g) = NΓ(f) = n §9. C¸c øng dông thÆng d− §Þnh lý (Bæ ®Ò Jordan) Cho ®−êng cong ΓR = {| z | = R, Imz ≥ β} v h m f gi¶i tÝch trong nöa mÆt ph¼ng D = {Imz > β} ngo¹i trõ h÷u h¹n ®iÓm bÊt th−êng. Khi ®ã ta cã ∫ f (z)dz 1. NÕu lim zf(z) = 0 th× lim =0 (4.9.1) z →∞ R → +∞ ΓR iλz ∫ f (z)e 2. NÕu lim f(z) = 0 th× ∀ λ > 0, lim dz = 0 (4.9.2) z →∞ R → +∞ ΓR Chøng minh Γ2 1. Tõ gi¶ thiÕt suy ra M ∀ z ∈ ΓR, | zf(z) | ≤ M R →→ 0 ⇔ | f(z) | ≤ +∞ R Γ3 Γ1 Suy ra θ β Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 73
  8. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− M ∫ f (z) ds = ∫ f (z)dz ≤ R(π + 2θ) R →→ 0 +∞ R ΓR Γ 2. Tõ gi¶ thiÕt suy ra ∀ z ∈ ΓR, | f(z) | ≤ M R →→ 0 +∞ Suy ra iλz ∫e iλz iλz iλz ∫e ∫e ∫e f (z)dz ≤ f (z) ds + f (z) ds + f (z) ds ΓR Γ1 Γ2 Γ3 ¦íc l−îng tÝch ph©n, ta cã f (z) ds ≤ 2Me-λyRθ ≤ 2Me-λ|β|β → 0 iλz iλz ∫e ∫e f (z) ds + R → +∞ Γ1 Γ3 π f (z) ds = MR ∫ e − λR sin t dt = πMRe-λRsinα → 0 víi α ∈ (0, π) iλz ∫e R → +∞ Γ2 0 HÖ qu¶ 1 Cho f(z) l ph©n thøc h÷u tû sao cho bËc cña mÉu sè lín h¬n bËc tö sè Ýt nhÊt l hai ®¬n vÞ, cã c¸c cùc ®iÓm ak víi k = 1...p n»m trong nöa mÆt ph¼ng trªn v cã c¸c cùc ®iÓm ®¬n bj víi j = 1...q n»m trªn trôc thùc. Khi ®ã ta cã +∞ q p ∫ f (x)dx = 2πi ∑ Re sf (a k ) + πi ∑ Re sf (b j ) (4.9.3) k =1 j =1 −∞ Chøng minh ΓR • §Ó ®¬n gi¶n, xÐt tr−êng hîp h m f cã mét cùc ®iÓm a thuéc nöa mÆt ph¼ng trªn v mét cùc ®iÓm ®¬n b thuéc a Γρ trôc thùc. Tr−êng hîp tæng qu¸t chøng minh t−¬ng tù. KÝ hiÖu -R b R ΓR : | z | = R, Imz > 0, Γρ : | z | = ρ, Imz > 0 Γ = ΓR ∪ [-R, b - ρ] ∪ Γρ ∪ [b + ρ, R] Theo c«ng thøc (4.7.6) ∫ f (z)dz ∫ f (z)dz + ∫ f (z)dz + ∫ f (z)dz ∫ f (z)dz = 2πiResf(a) + = Γ Γρ ΓR [ − R,b −ρ ] [ b + ρ,R ] KÕt hîp víi c«ng thøc (4.9.1) suy ra +∞ ∫ f (x)dx = ∫ f (z)dz ∫ f (z)dz + lim lim R → +∞ ,ρ →0 R → +∞ ,ρ →0 −∞ [ − R,b −ρ ] [ b + ρ,R ] ∫ f (z)dz = 2πiResf(a) - lim (1) ρ →0 Γρ c −1 Do b l cùc ®iÓm ®¬n nªn f(z) = + g(z) víi g(z) gi¶i tÝch trong l©n cËn ®iÓm b z−b Suy ra h m g(z) bÞ chÆn trªn Γρ Trang 74 Gi¸o Tr×nh To¸n Chuyªn §Ò
  9. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− ∫ g(z)dz ∃ M > 0 : ∀ z ∈ Γρ , | g(z) | < M ≤ Mπρ ρ→0 → 0  ⇒ (2) Γρ Tham sè ho¸ cung Γρ : z = b + ρeit víi t ∈ [π, 0]. TÝnh trùc tiÕp c −1 ∫ z − b dz = - πiResf(b) (3) Γρ Thay (2) v (3) v o (1) suy ra c«ng thøc (4.9.1) +∞ x −1 ∫ (x VÝ dô TÝnh tÝch ph©n I = dx + 1) 2 2 −∞ z −1 Ph©n thøc f(z) = cã cùc ®iÓm kÐp a = i thuéc nöa mÆt ph¼ng trªn (z + 1) 22 ′  z −1   1 2(z − 1)  1  ( z + i ) 2 − (z + i ) 3  = 4 i Resf(i) = lim = z →i  ( z + i ) 2      z =i π I = 2πiResf(i) = - Suy ra 2 HÖ qu¶ 2 Cho f(z) l ph©n thøc h÷u sao cho bËc cña mÉu sè lín h¬n bËc tö sè Ýt nhÊt l mét ®¬n vÞ, cã c¸c cùc ®iÓm ak víi k = 1...p n»m trong nöa mÆt ph¼ng trªn v cã c¸c cùc ®iÓm ®¬n bj víi j = 1...q n»m trªn trôc thùc. KÝ hiÖu g(z) = f(z)eiαz ta cã +∞ p q dx = 2πi ∑ Re sg(a k ) + πi ∑ Re sg(b j ) iαx ∫ f (x)e (4.9.4) k =1 j=1 −∞ Chøng minh LËp luËn t−¬ng tù nh− chøng minh hÖ qu¶ 1. +∞ +∞ e ix sin x 1 VÝ dô TÝnh tÝch ph©n I = ∫ dx = Im ∫ dx x 2 −∞ x 0 1 cã cùc ®iÓm ®¬n b = 0 thuéc trôc thùc v Resg(0) = lim eiz = 1 Ph©n thøc f(z) = z z →0 π 1 I = Im(πi) = Suy ra 2 2 HÖ qu¶ 3 Cho ®−êng cong ΓR = { | z | = R, Rez ≤ α } v h m f gi¶i tÝch trong nöa mÆt ph¼ng D = { Rez < α } ngo¹i trõ h÷u h¹n ®iÓm bÊt th−êng v lim f(z) = 0. z →∞ λz ∫ f (z)e ∀ λ > 0, lim dz = 0 (4.9.5) R → +∞ ΓR Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 75
  10. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− Chøng minh Suy ra tõ ®Þnh lý b»ng c¸ch quay mÆt ph¼ng mét gãc π/2. HÖ qu¶ 4 Víi c¸c gi¶ thiÕt nh− hÖ qu¶ 3, kÝ hiÖu g(z) = eλzf(z) α + i∞ 1 ∑ Re sg(a λz ∫i∞e f (z)dz = ∀ λ > 0, I(λ) = ) (4.9.6) 2πi α − k Re a k < α Chøng minh KÝ hiÖu Γ = ΓR ∪ [α - iβ, α + iβ] víi R ®ñ lín ®Ó bao hÕt c¸c cùc ®iÓm cña h m f(z) Theo c«ng thøc (4.7.6) α + iβ 1 1 1 ∑ Re sg(a λz ∫ e f (z)dz = 2πi λz ∫e λz ∫ f (z)e dz + 2πi ) f (z )dz = k 2 πi Γ Re a k < α ΓR α − iβ Suy ra α + iβ 1 ∑ Re sg(a λz ∫ f (z)e iλz ∫iβe f (z)dz = )- dz k 2 πi α − Re a k < α ΓR Cho β → +∞ v sö dông hÖ qu¶ 3 chóng ta nhËn ®−îc c«ng thøc (4.9.6) B i tËp ch−¬ng 4 1. T×m miÒn héi tô v tæng cña c¸c chuçi sau ®©y. +∞ −2 +∞ ni n 2 n 1 ∑ ( z + i ) n +1 ∑ (n + 1)i ∑ (z − 2) n n +2 (z − i ) n a. c. b. n =1 n = −∞ n =0 2. T×m miÒn héi tô cña chuçi Marlaurin cña c¸c h m sau ®©y. 3z + 1 z 2 − 2 z + 19 z a. b. c. (z − 3) 2 (2 z + 5) 4 + z2 ( z − 2) 3 d. (1 - z)e-2z e. sin3z f. ln(1 + z2) 3. T×m miÒn héi tô cña chuçi Taylor t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 1 a. ,a=1 b. 2 ,a=3 c. , a = 3i z−2 1− z z − 6z + 5 1 2 f. e z − 4 z +1 , a = 2 d. sin(z2 + 4z), a = -2 e. 2 , a = 2 z Trang 76 Gi¸o Tr×nh To¸n Chuyªn §Ò
  11. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− 4. X¸c ®Þnh cÊp kh«ng ®iÓm cña c¸c h m sè sau ®©y. sin 3 z a. (z2 + 9)(z2 + 4)5 b. (1 - ez)(z2 - 4)3 c. z 5. T×m h m f gi¶i tÝch t¹i z = 0 v tho¶ m n n2 + 1 πn 1 1 1 1 , n ∈ ∠* b. f(± , n ∈ ∠* c. f( ) = sin , n ∈ ∠* a. f( )= )= 3n + 1 4 n n n 2 n 6. T×m miÒn héi tô cña chuçi Laurent t¹i ®iÓm a cña c¸c h m sau ®©y. 1 1 ,a=0v a=∞ , a = 0, a = 1 v a = ∞ a. b. z−2 z(1 − z) 1 z 2 − 4z c. z2 e z , a = 0 v a = ∞ d. cos ,a=2 ( z − 2) 2 7. T×m chuçi Laurent trong cña h m f trong c¸c miÒn D sau ®©y. z 2 − 2z + 5 1+ z , 1
  12. Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− e z dz zdz ∫ z2 + 4 , Γ : | z | = 3 ∫ (z − 1)(z − 2) , Γ : | z - 2 | = 2 a. b. Γ Γ dz dz ∫z ∫ (z − 1) , Γ : x2 + y2 = 2x + 2y - 1 , Γ : x 2 + y2 = 2x c. d. +1 (z + 1) 4 2 2 Γ Γ dz dz ∫ (z − 3)(z ∫z ,Γ:|z|=2 , Γ: |z|=2 e. f. + 1) +1 5 10 Γ Γ n  1 dz ∫  sin z  ∫z dz , Γ : | z | = 1 , Γ : 4x 2 + 2y2 = 3 g. h. +1 3   Γ Γ 11. TÝnh c¸c tÝch ph©n x¸c ®Þnh sau ®©y π 2π π dϕ dϕ dϕ ∫ 13 + 12 sin ϕ a. ∫ b. ∫ c. 1 + cos ϕ 0 (1 + cos ϕ) 2 −π 0 12. T×m sè nghiÖm cña c¸c ®a thøc trong miÒn D sau ®©y. z5 + 2z2 + 8z + 1, | z | < 1 v 1 ≤ | z | 0 c. 2z4 - 3z3 + 3z2 - z + 1, Rez > 0 v Imz > 0 d. 13. TÝnh c¸c tÝch ph©n suy réng sau ®©y. +∞ +∞ +∞ x2 + 1 dx dx a. ∫ 2 b. ∫ 4 ∫ (x dx c. − ∞ ( x + 9) −∞ x + 1 + 1)(x 2 + 4) 2 2 0 +∞ +∞ +∞ dx x cos dx x sin x ∫ (x ∫ (x ∫x d. e. f. dx + 1) n + 4) 2 − 2x + 10 2 2 2 −∞ −∞ 0 +∞ 2 +∞ +∞ 2 x 2 ln x  sin x  ln x g. ∫  h. ∫ i. ∫  dx dx dx 0 1+ x 0 (1 + x ) 2 22 x − ∞ x(1 − x ) 1 1 dx ∫ ∫ j. k. dx x +1 (1 − x)(1 + x) 2 3 −1 0 Trang 78 Gi¸o Tr×nh To¸n Chuyªn §Ò
  13. Ch−¬ng 5 BiÕn ®æi fourier v BiÕn ®æi laplace §1. TÝch ph©n suy réng • Trong ch−¬ng n y chóng ta kÝ hiÖu F(3, ∀) = { f : 3 → ∀} l ®¹i sè c¸c h m biÕn thùc, trÞ phøc +∞ ∫ | f (t) | dt l || f ||∞ = SupR| f(t) | v || f ||1 = c¸c chuÈn trªn F(3, ∀) −∞ L∞ = { f ∈ F(3, ∀) : || f ||∞ ≤ +∞ } l ®¹i sè c¸c h m cã module bÞ chÆn C0 = { f ∈ C(3, ∀) : lim f(t) = 0 } l ®¹i sè c¸c h m liªn tôc, dÇn vÒ kh«ng t¹i ∞ t →∞ L = { f ∈ F(3, ∀) : || f ||1 ≤ +∞ } l ®¹i sè c¸c h m kh¶ tÝch tuyÖt ®èi trªn 3 1 Chóng ta ® biÕt r»ng h m kh¶ tÝch tuyÖt ®èi l liªn tôc tõng khóc, dÇn vÒ kh«ng t¹i v« cïng v bÞ chÆn trªn to n 3. Tøc l L1 ⊂ CM0 ⊂ L∞ • Cho kho¶ng I ⊂ 3 v h m F : I × 3 → ∀, (x, t) α F(x, t) kh¶ tÝch trªn 3 víi mçi x ∈ I cè ®Þnh. TÝch ph©n suy réng +∞ ∫ F(x, t )dt víi x ∈ I f(f) = (5.1.1) −∞ gäi l bÞ chÆn ®Òu trªn kho¶ng I nÕu cã h m ϕ ∈ L1 sao cho ∀ (x, t) ∈ I × 3,  F(x, t)  ≤ | ϕ(t) | §Þnh lý TÝch ph©n suy réng bÞ chÆn ®Òu cã c¸c tÝnh chÊt sau ®©y 1. NÕu h m F(x, t) liªn tôc trªn miÒn I × 3 th× h m f(x) liªn tôc trªn kho¶ng I +∞ ∂F ∂F ∫ ∂x (x, t )dt liªn tôc trªn miÒn I × 3 v tÝch ph©n 2. NÕu c¸c h m F(x, t), còng bÞ ∂x −∞ chÆn ®Òu trªn kho¶ng I th× h m f(x) cã ®¹o h m trªn kho¶ng I +∞ +∞ ∂F d dx −∫ ∫ ∂x (x, t )dt ∀ x ∈ I, F(x, t )dt = ∞ −∞ 3. NÕu h m F(x, t) liªn tôc trªn I × 3 th× h m f(x) kh¶ tÝch ®Þa ph−¬ng trªn kho¶ng I +∞ b   b ∫  ∫ F(x, t )dx dt ∫ f (x)dx = ∀ [a, b] ⊂ I,     −∞ a a • KÝ hiÖu Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 79
  14. Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace t ≥ 0 gäi l h m nh¶y ®¬n vÞ η(t) = 1 0 t
  15. Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace 1. Do h m g kh¶ tÝch tuyÖt ®èi nªn bÞ chÆn trªn 3 ∀ (t, τ) ∈ 32, | f(τ)g(t - τ) | ≤ || g ||∞ | f(τ) | Do f kh¶ tÝch tuyÖt ®èi nªn tÝch ph©n suy réng (f∗g)(t) héi tô tuyÖt ®èi v bÞ chÆn ®Òu +∞ +∞ +∞  +∞  || f ∗ g ||1 = ∫ ∫ f (τ)g(t − τ)dτ dt ≤ ∫ | f (τ) |  ∫ | g(t − τ) | dt dτ = || f ||1 || g ||1    −∞  −∞ −∞ −∞ +∞ +∞ ∫ f (τ)g(t − τ)dτ = ∫ f (t − θ)g(θ)dθ = (g∗f)(t) ∀ t ∈ 3, (f∗g)(t) = 2. −∞ −∞ +∞ h 1 ∫ f (t − τ) lim δ(τ, h)dτ = lim h∫ ∀ t ∈ 3, (f∗δ)(t) = f (t − τ)dτ = f(t) 3. h →0 h →0 −∞ 0 4. Suy ra tõ tÝnh tuyÕn tÝnh cña tÝch ph©n §2. C¸c bæ ®Ò Fourier Bæ ®Ò 1 Cho h m f ∈ L1. Víi mçi f ∈ 3 cè ®Þnh kÝ hiÖu fx(t) = f(t - x) víi mäi t ∈ 3 Khi ®ã ¸nh x¹ Φ : 3 → L1, f → fx l liªn tôc theo chuÈn. Chøng minh Ta chøng minh r»ng ∀ ε > 0, ∃ δ > 0 : ∀ x, y ∈ 3, | x - y | < δ ⇒ || Φ(x) - Φ(y) ||1 < ε ThËt vËy Do h m f kh¶ tÝch tuyÖt ®èi nªn 1 ∀ ε > 0, ∃ N > 0 : ∫ | f (t ) | dt < ε 4 | t |≥ N Trong kho¶ng [-N, N] h m f cã h÷u h¹n ®iÓm gi¸n ®o¹n lo¹i mét a1 = - N < a2 < ... < am = N víi ∆ = Max{| ak - ak-1 | : k = 1...m} v trªn mçi kho¶ng con [ak-1, ak] h m cã thÓ th¸c triÓn th nh h m liªn tôc ®Òu ε ∀ ε > 0, ∃ δ > 0 : | x - y | < δ ⇒ | f(x) - f(y) | < 2 m∆ Tõ ®ã suy ra −íc l−îng +∞ ∫ f (t − x) − f (t − y) dt || Φ(x) - Φ(y) ||1 = −∞ ak m ∑ ∫ f (t − x) − f (t − y) dt ∫ f (t − x) − f (t − y) dt + ≤
  16. Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace +∞ 1 ∫∞H(λt )e dt ixt H(t) = e-|t| v hλ(x) = (5.2.1) 2π − Bæ ®Ò 2 C¸c h m H(t) v hλ(x) cã c¸c tÝnh chÊt sau ®©y ∀ t ∈ 3, 0 < H(t) ≤ 1 lim H(λt) = 1 lim H(λt) = 0 1. λ →0 λ → +∞ +∞ 1λ ∫h ∀ (λ, x) ∈ 3 × 3* 2. hλ(x) = (x)dx = 1 + λ π λ2 + x 2 −∞ +∞ +∞ 1  ∫∞ −∫∞f (s)e ds H(λt )e dt ∀ f ∈ L1 (f ∗ hλ)(x) = ist ixt 3. 2π −     ∀ g ∈ L∞ liªn tôc t¹i x ∈ 3 lim (g ∗ hλ)(f) = g(x) 4. λ →0 ∀f∈L lim || f ∗ hλ - f ||1 = 0 1 5. λ →0 Chøng minh 1. Suy ra tõ ®Þnh nghÜa h m H(t) 2. TÝnh trùc tiÕp tÝch ph©n (5.2.1) +∞ 1  ( λ + ix ) t  11λ 0 1 1  ∫e dt + ∫ e ( − λ + ix ) t dt  =  2 π  λ + ix − − λ + ix  = π λ2 + x 2 hλ(x) =  2π  −∞    0 3. Theo ®Þnh nghÜa tÝch chËp v h m hλ +∞ +∞ +∞ 1   ∫ f (x − y)e i ( x − y ) t dy H(λt )e ixt dt (f ∗ hλ)(x) = ∫ f (x − y)h λ (y)dy = 2 π −∫  −∞  ∞  −∞ §æi biÕn s = x - y ë tÝch ph©n bªn trong nhËn ®−îc kÕt qu¶. 4. Theo ®Þnh nghÜa tÝch chËp v h m hλ +∞ +∞ ∫ g(x − y)h λ (y)dy = ∫ g(x − λs)h (s)ds víi y = λs (g ∗ hλ)(x) = 1 −∞ −∞ ¦íc l−îng trùc tiÕp ∀ (x, s) ∈ 32, | g(x - λs)h1(s) | ≤ || g ||∞ | h1(s) | Suy ra tÝch ph©n trªn bÞ chÆn ®Òu. Do h m g liªn tôc nªn cã thÓ chuyÓn giíi h¹n qua dÊu tÝch ph©n. +∞ ∫ g( x ) h (g ∗ hλ)(x) λ → 0 (s)ds = g(x) → 1 −∞ 5. KÝ hiÖu +∞ ∫ | f (x − y) − f (x) | dx ≤ 2|| f || ∀ y ∈ 3, g(y) = || fy - f ||1 = 1 −∞ Theo bæ ®Ò 1. h m g liªn tôc t¹i y = 0 víi g(0) = 0 v bÞ chÆn trªn to n 3 Tõ ®Þnh nghÜa chuÈn, tÝch chËp v h m hλ Trang 82 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
60=>0