intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Toán học phần 7

Chia sẻ: Phuoc Hau Phuoc Hau | Ngày: | Loại File: PDF | Số trang:16

61
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mỗi lớp tương đương (1.7.3) [a] = { b ∈ D : b ~ a } gọi là một thành phần liên thông chứa điểm a.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Toán học phần 7

  1. Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace B i tËp ch−¬ng 5 1. T×m ¶nh Fourier cña c¸c h m gèc sau ®©y. a. e-2(t-1)η(t) c. δ(t +1) + δ(t -1) d. sin(2πt + π b. e-2|t-1| ) 4 e. e-αtcosβtη(t), α > 0 f. e-3|t|sin2t g. te-2tsin4tη(t) h. sintsin2t t | t | ≤ 1 +∞  i. 1 + cos πt | t | ≤ 1 j. 1 − t 0 < t 1 t ∉ (0, 1)   0 | t | > 2  −∞ 2 sin πt sin 2 π(t − 1)  sin t  4t m. t   n. o. πt π(t − 1)  πt  (1 + t 2 ) 2 +∞ ∫ | F(ω) | p. BiÕt f(t) ∈ 3+, F-1{(1 + iω)F(ω)} = Ae-2tη(t) v dω = 2 π 2 −∞ +∞ 1 itω ∫ Re F(ω)e q. BiÕt f(t) ∈ 3, ∀t ≤ 0, f(t) = 0 v dω = | t | e-|t| 2π −∞ 2. T×m gèc Fourier cña c¸c h m ¶nh sau ®©y. 2 sin 3(ω − 2 π) a. eωη(-ω) - 2e-ωtη(ω) b. d. e2iωcosω c. η(ω) - η(ω - 2) ω − 2π -ω e. e cos(4ω + π/3) f. cos2ωsin(ω/2) g. 2πδ(ω) + πδ(ω - 4π) + πδ(ω + 4π) h. 2δ(ω - π) + 2δ(ω + π) + 3δ(ω - 2π) + 3δ(ω + 2π) i. | F | = 2[η(ω + 3) - η(ω - 3)], Φ = - 2 ω + π 3 3. Cho f ↔ F víi f(t) cã ®å thÞ nh− h×nh bªn. 2 1 +∞ ∫ F(ω)dω a. T×m Φ(ω) b. T×m F(0) c. TÝnh -1 0 1 2 3 −∞ +∞ +∞ 2 sin ω i 2 ω d. TÝnh ∫ F(ω) ∫ | F(ω) | e dω dω f. T×m gèc cña ReF(ω) 2 e. TÝnh ω −∞ −∞ 4. TÝnh tÝch chËp (f∗g)(t) b»ng biÕn ®æi Fourier ng−îc a. f(t) = te-2tη(t), g(t) = e-4tη(t) b. f(t) = te-2tη(t), g(t) = te-4tη(t) sin t c. f(t) = e-tη(t), g(t) = etη(-t) d. f(t) = cos2t, g(t) = πt 5. Gi¶i ph−¬ng tr×nh vi ph©n hÖ sè h»ng b»ng biÕn ®æi Fourier. a. y” + 3y’ + 2y = x’ + 3x b. y” + 5y’ + 6y = x’ + 4x y” + 2 y’ + y = 2x” - 2x c. d. y” + 4y’ + 3y = x’ + 2x y’ + 10y = x∗f - x víi f(t) = e η(t) + 3δ(t) -t e. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 99
  2. Ch−¬ng 5. BiÕn §æi Fourier V BiÕn §æi Laplace 6. T×m ¶nh Laplace cña c¸c h m gèc sau ®©y. b. δ(t) + η(t) c. cos2αt a. e-2t + e-3tsin3t d. sin3t e. teαt f. tcos3t g. e-2tch3t h. (t + 1)sin2t sin 2 t sin 4 t j. e-tsin2tcos4t i. ch2tcost k. l. t t 1 − eτ 1 − cos t t t sin 2 t cos 3t ∫ (τ + 1) cos τdτ ∫ τ dτ m. n. o. p. te t t 0 0 shτ t t t 2τ ∫ ∫ cos(t − τ)e ∫ ( t − τ) dτ dτ cos 2 τdτ t. | sint |, | cost | 2 q. r. s. τ 0 0 0 7. T×m gèc Laplace cña c¸c h m ¶nh sau ®©y. e −2 z z +1 z+8 1 a. 2 b. c. d. z −9 z + 2z z − 4z + 8 z + 4z + 5 2 2 2 z2 z3 3z z e. f. g. h. (z − 1) 3 ( z 2 + 4) 2 (z − 1)(z − 3) 2 z − 5z 2 + 4 4 3z 2 − 1 z2 1 1 i. j. k. l. sin (z 2 + 4)(z 2 + 9) (z 2 + 1) 3 z (z − 1) 2 z 1 1 12 1 1 1 − z −1 o. e z n. cos p. e z −1 z z z 8. Gi¶i c¸c ph−¬ng tr×nh vi ph©n sau ®©y b»ng biÕn ®æi Laplace. x” - 3x’ + 2x = tet a. x(0) = 1, x’(0) = -2 2t b. x” + 2x’ + x = t e x(0) = 0, x’(0) = 0 t c. x” - 2x’ + 2x = e sint x(0) = 0, x’(0) = 1 3t d. x” - 3x’ + 2x = 12e x(0) = 2, x’(0) = 6 e. x” + 4x = 3sint + 10cos3t x(0) = -2, x’(0) = 3 f. x” - x’ = 4sint + 5cos2t x(0) = -1, x’(0) = -2 -t g. x”’ + 3x” + 3x’ + x = 6e x(0) = x’(0) = x”(0) = 0 9. Gi¶i c¸c hÖ ph−¬ng tr×nh vi ph©n sau ®©y b»ng biÕn ®æi Laplace. x ′ + 3x − 4 y = 9e 2 t x ′ − 2x − 4y = cos t   c. x + y′ + 2y = sin t a. 2x + y ′ − 3y = 3e 2 t x(0) = 0, y(0) = 0 x(0) = 2, y(0) = 0   2x ′′ + x − y′ = −3 sin t x ′′ − y′ = 0   b. x + y′ = − sin t d. x − y ′′ = 2 sin t x(0) = 0, x ′(0) = 1, y(0) = 0 x(0) = −1, x ′(0) = y(0) = y′(0) = 1   Trang 100 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. Ch−¬ng 6 Lý thuyÕt tr−êng §1. Tr−êng v« h−íng • MiÒn D ⊂ 33 cïng víi ¸nh x¹ u : D → 3, (x, y, z) α u(x, y, z) (6.1.1) gäi l mét tr−êng v« h−íng v kÝ hiÖu l (D, u). Nh− vËy nÕu (D, u) l tr−êng v« h−íng th× u l mét h m sè x¸c ®Þnh trªn miÒn D. Sù kh¸c biÖt thÓ hiÖn ë chç khi nãi vÒ tr−êng v« h−íng ngo i c¸c tÝnh chÊt cña h m u ng−êi ta cßn quan t©m h¬n ®Õn cÊu tróc cña miÒn x¸c ®Þnh D. Tr−êng v« h−íng (D, u) gäi l liªn tôc (cã ®¹o h m riªng, ...) nÕu nh− h m u l liªn tôc (cã ®¹o h m riªng, ... ) trªn miÒn D. Sau n y nÕu kh«ng nãi g× thªm chóng ta xem r»ng c¸c tr−êng v« h−íng l cã ®¹o h m liªn tôc tõng khóc trë lªn. Cho ®iÓm A ∈ D, mÆt cong cã ph−¬ng tr×nh u(x, y, z) = u(A) gäi l mÆt møc (®¼ng trÞ) ®i qua ®iÓm A. Do tÝnh ®¬n trÞ cña h m sè, qua mçi ®iÓm A chØ cã duy nhÊt mét mÆt møc. Hay nãi c¸ch kh¸c c¸c mÆt møc ph©n chia miÒn D th nh c¸c líp mÆt cong rêi nhau. VÝ dô Tr−êng v« h−íng u = x2 + y2 + z2 gäi l tr−êng b¸n kÝnh, c¸c mÆt møc l c¸c mÆt cÇu ®ång t©m : x2 + y2 + z2 = R2 • Cho ®iÓm A ∈ D v vect¬ ®¬n vÞ e ∈ 33. Giíi h¹n ∂u u ( A + te ) − u ( A ) (A) = lim (6.1.2) ∂e t t →0 gäi l ®¹o h m theo h−íng vect¬ e cña tr−êng v« h−íng u t¹i ®iÓm A. §Þnh lý Cho vect¬ e = {cosα, cosβ, cosγ}. Khi ®ã ∂u ∂u ∂u ∂u cosα + cosβ + cosγ = (6.1.3) ∂e ∂x ∂y ∂z Chøng minh Theo gi¶ thiÕt h m u cã ®¹o h m riªng liªn tôc ∂u ∂u ∂u tcosα + tcosβ + tcosγ+ o(te) u(A + te) - u(A) = ∂x ∂y ∂z Chia hai vÕ cho t v chuyÓn qua giíi h¹n nhËn ®−îc c«ng thøc trªn. Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 101
  4. Ch−¬ng 6. Lý ThuyÕt Tr−êng ∂u ∂u ∂u ∂u ∂u ∂u HÖ qu¶ = = = ∂j ∂i ∂x ∂y ∂k ∂z VÝ dô TÝnh ®¹o h m theo h−íng vect¬ e(1, 1, -1) cña tr−êng v« h−íng u = x2 + y2 - z2 t¹i ®iÓm A(1, 1, -1). Ta cã ∂u ∂u ∂u 1 1 (A) = -2 v cosα = cosβ = , cosγ = - (A) = (A) = 2, ∂x ∂y ∂z 3 3 Suy ra ∂u 1 1 1 =2 3 (A) = 2 +2 +2 ∂e 3 3 3 §2. Gradient • Cho tr−êng v« h−íng (D, u). Vect¬ ∂u ∂u ∂u grad u = i+ j+ k (6.2.1) ∂x ∂y ∂z gäi l gradient cña tr−êng v« h−íng u. VÝ dô Cho u = xy + yz - zx v A(1, 1, -1) Ta cã grad u = {y - z, x + z, y - x} v grad u(A) = {2, 0, 0} • Tõ ®Þnh nghÜa suy ra gradient cã c¸c tÝnh chÊt sau ®©y. C¸c qui t¾c tÝnh Cho u, v l c¸c tr−êng v« h−íng, f l h m cã ®¹o h m v λ l sè thùc. grad (λu + v) = λ grad u + grad v 1. grad (uv) = v grad u + u grad v 2. grad f(u) = f’(u) grad u 3. (6.2.2) Chøng minh Suy ra tõ c«ng thøc (6.2.1) v tÝnh chÊt cña ®¹o h m riªng. Liªn hÖ víi ®¹o h m theo h−íng Cho u l tr−êng v« h−íng v e vect¬ ®¬n vÞ. ∂u = 4. ∂e ∂u Max| | = || grad u || ®¹t ®−îc khi v chØ khi e // grad u 5. ∂e Trang 102 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. Ch−¬ng 6. Lý ThuyÕt Tr−êng ∂u Min| | = 0 ®¹t ®−îc khi v chØ khi e ⊥ grad u 6. (6.2.3) ∂e Chøng minh Suy ra tõ c«ng thøc (6.1.2) v tÝnh chÊt cña tÝch v« h−íng. Liªn hÖ víi mÆt møc 7. Gradient cña tr−êng v« h−íng u t¹i ®iÓm A l ph¸p vect¬ cña mÆt møc ®i qua ®iÓm A t¹i chÝnh ®iÓm ®ã. Chøng minh grad u Cho S : u(x, y, z) = α l mÆt møc ®i qua ®iÓm A T Γ v Γ : x = x(t), y = y(t), z = z(t) l ®−êng cong A tr¬n tuú ý ®i qua ®iÓm A v n»m gän trªn mÆt S cong S. Khi ®ã vect¬ T = {x’(t), y’(t), z’(t)} l vect¬ tiÕp xóc cña ®−êng cong Γ t¹i ®iÓm A. Do Γ ⊂ S nªn u[x(t), y(t), z(t)] = α. §¹o h m hai vÕ theo t u ′x x’(t) + u ′y y’(t) + u ′z z’(t) = 0 grad u ⊥ T Suy ra VÝ dô XÐt ph©n bè nhiÖt trªn vËt r¾n h×nh cÇu D, ®ång chÊt, truyÒn nhiÖt ®¼ng h−íng, nguån nhiÖt ®Æt ë t©m. Gäi u(x, y, z) l nhiÖt ®é t¹i ®iÓm M(x, x, y). Khi ®ã u l tr−êng v« h−íng x¸c ®Þnh trªn miÒn D. C¸c mÆt møc (®¼ng nhiÖt) l c¸c mÆt cÇu ®ång t©m. H−íng truyÒn nhiÖt cùc ®¹i ®ång ph−¬ng víi vect¬ grad u, h−íng cùc tiÓu vu«ng gãc víi vect¬ grad u. §3. Tr−êng vect¬ • MiÒn D ⊂ 33 cïng víi ¸nh x¹ F : D → 33, (x, y, z) α F = X(x, y, z)i + Y(x, y , z)j + Z(x, y, z)k (6.3.1) gäi l tr−êng vect¬ v kÝ hiÖu (D, F ). C¸c tr−êng v« h−íng X, Y v Z gäi l c¸c th nh phÇn to¹ ®é cña tr−êg vect¬ F. Tr−êng vect¬ (D, F ) l liªn tôc (cã ®¹o h m riªng, ...) nÕu c¸c th nh phÇn to¹ ®é cña nã l liªn tôc (cã ®¹o h m riªng, ...) trªn miÒn D. Sau n y nÕu kh«ng nãi g× thªm chóng ta xem r»ng c¸c tr−êng vect¬ l cã ®¹o h m riªng liªn tôc tõng khóc trªn miÒn D. VÝ dô F = {x, y, z} l tr−êng vect¬ b¸n kÝnh, G = {X, Y, 0} l tr−êng vect¬ ph¼ng Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 103
  6. Ch−¬ng 6. Lý ThuyÕt Tr−êng • Hä ®−êng cong Γ n»m gän trong miÒn D gäi l hä ®−êng dßng cña tr−êng vect¬ F nÕu cã c¸c tÝnh chÊt sau ®©y. 1. Víi mçi ®iÓm A ∈ D cã duy nhÊt mét ®−êng cong Γ(A) ®i qua 2. Vect¬ F(A) l vect¬ tiÕp xóc cña ®−êng cong Γ(A) t¹i ®iÓm A. VÝ dô NÕu tr−êng F l tr−êng chÊt láng th× hä ®−êng dßng F chÝnh l dßng chÊt láng ch¶y d−íi t¸c ®éng cña tr−êng F. Γ • Gi¶ sö hä ®−êng dßng cã ph−¬ng tr×nh tham sè x = x(t), y = y(t), z = z(t) Theo ®Þnh nghÜa trªn tr−êng vect¬ tiÕp xóc T = {x’(t), y’(t), z’(t)} ®ång ph−¬ng víi tr−êng vect¬ F = {X, Y, Z}. Tøc l x’(t) = λX, y’(t) = λY, z’(t) = λZ víi λ ∈ 3 Tõ ®ã suy ra hÖ ph−¬ng tr×nh vi ph©n dx dy dz = λdt = = (6.3.2) X Y Z gäi l hÖ ph−¬ng tr×nh vi ph©n cña hä ®−êng dßng. VÝ dô T×m ®−êng dßng cña tr−êng vect¬ F = {y, - x, 1} ®i qua ®iÓm A(1, 1, 0) dy dx = dz = λdt LËp hÖ ph−¬ng tr×nh vi ph©n =- y x Gi¶i ra ph−¬ng tr×nh tham sè cña hä ®−êng dßng x = Rcost, y = Rsint, z = - t + C víi (R, C) ∈ 32 §−êng dßng ®i qua ®iÓm A tho¶ m n Rcost0 = 1, Rsint0 = 1, -t0 + C = 0 R = 2 , t0 = π/4, C = π/4 Suy ra §ã chÝnh l ®−êng xo¾n èc ®Òu trong kh«ng gian 2 sint, z = - t + π/4 2 cost, y = x= §4. Th«ng l−îng • Cho tr−êng vect¬ (D, F ) v mÆt cong S tr¬n tõng m¶nh, n»m gän trong miÒn D, ®Þnh h−íng theo ph¸p vect¬ l n. TÝch ph©n mÆt lo¹i hai ∫∫ < F, n > dS = ∫∫ Xdydz + Ydzdx + Zdxdy Φ= (6.4.1) S S gäi l th«ng l−îng cña tr−êng vect¬ F qua mÆt cong S. Trang 104 Gi¸o Tr×nh To¸n Chuyªn §Ò
  7. Ch−¬ng 6. Lý ThuyÕt Tr−êng NÕu F l tr−êng chÊt láng th× th«ng l−îng chÝnh l l−îng n chÊt láng ®i qua mÆt cong S theo h−íng ph¸p vect¬ n trong mét ®¬n vÞ thêi gian. Γ S • Cho tr−êng vect¬ (D, F ) víi F = {X, Y, Z}. Tr−êng v« h−íng ∂X ∂Y ∂Z + + div F = (6.4.2) ∂x ∂y ∂z gäi l divergence (nguån) cña tr−êng vect¬ F. VÝ dô Cho tr−êng vect¬ F = {xy, yz, zx} v ®iÓm A(1, 1, -1) Ta cã div F = y + z + x v div F(A) = 1 + 1 - 1 = 2 §Þnh lý Cho F, G l c¸c tr−êng vect¬ v u l tr−êng v« h−íng. Divergence cã c¸c tÝnh chÊt sau ®©y. div (F + G) = div F + div G 1. div (u F) = u div F + 2. Chøng minh Suy ra tõ ®Þnh nghÜa (6.4.2) v c¸c tÝnh chÊt cña ®¹o h m riªng. • Gi¶ sö Ω l miÒn ®ãng n»m gän trong miÒn D v cã biªn l mÆt cong kÝn S tr¬n tõng m¶nh, ®Þnh h−íng theo ph¸p vect¬ ngo i n. Khi ®ã c«ng thøc Ostrogradski ®−îc viÕt l¹i ë d¹ng vect¬ nh− sau. ∫∫ < F, n > dS = ∫∫∫ divFdV (6.4.3) Ω S Chän Ω l h×nh cÇu ®ãng t©m A, b¸n kÝnh ε. Tõ c«ng thøc (6.4.3) v ®Þnh lý vÒ trÞ trung b×nh cña tÝch ph©n béi ba suy ra. 1 div F(A) = lim ∫∫ < F, n > dS (6.4.4) ε →0 V S Theo c«ng thøc trªn, nguån cña tr−êng vect¬ F t¹i ®iÓm A l l−îng chÊt láng ®i ra tõ ®iÓm A theo h−íng cña tr−êng vect¬ F. • Cho tr−êng vect¬ (D, F ) v ®iÓm A ∈ D. NÕu div F(A) > 0 th× ®iÓm A gäi l ®iÓm nguån. NÕu div F(A) < 0 th× ®iÓm A gäi l ®iÓm thñng. VÝ dô Cho tr−êng vect¬ F = {xy, yz, zx} div F = y + z + x Ta cã div F(1, 0, 0) = 1 > 0 ®iÓm (1, 0, 0) l ®iÓm nguån div F(-1, 0, 0) = -1 < 0 ®iÓm (-1, 0, 0) l ®iÓm thñng Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 105
  8. Ch−¬ng 6. Lý ThuyÕt Tr−êng §5. Ho n l−u • Cho tr−êng vect¬ (D, F ) v ®−êng cong Γ kÝn, tr¬n tõng khóc, n»m gän trong miÒn D, ®Þnh h−íng theo vect¬ tiÕp xóc T. TÝch ph©n ®−êng lo¹i hai K = ∫ < F, T > ds = ∫ Xdx + Ydy + Zdz (3.5.1) Γ Γ gäi l ho n l−u cña tr−êng vect¬ F däc theo ®−êng cong kÝn Γ. NÕu F l tr−êng chÊt láng th× ho n l−u l c«ng dÞch chuyÓn mét ®¬n vÞ khèi l−îng chÊt láng däc Γ theo ®−êng cong Γ theo h−íng vect¬ T. • Cho tr−êng vect¬ (D, F ) víi F = {X, Y, Z}. Tr−êng vect¬  ∂Z ∂Y   ∂Y ∂X   ∂X ∂Z   ∂y − ∂z  i +  ∂z − ∂x  j +  ∂x − ∂y  k rot F =   (6.5.2)         gäi l rotation (xo¸y) cña tr−êng vect¬ F. VÝ dô Cho tr−êng vect¬ F = {xy, yz, zx} v ®iÓm A(1, 0, -1) Ta cã rot F = {z, x, y} v rot F(A) = {-1, 1, 0} §Þnh lý Cho F, G l c¸c tr−êng vect¬ v u l tr−êng v« h−íng. Rotation cã c¸c tÝnh chÊt sau ®©y. rot (F + G) = rot F + rot G 1. rot (u F) = u rot F + [grad u, F] 2. Chøng minh Suy ra tõ ®Þnh nghÜa (6.5.2) v c¸c tÝnh chÊt cña ®¹o h m riªng. • Gi¶ sö S l mÆt cong tr¬n tõng m¶nh, n»m gän trong miÒn D, ®Þnh h−íng theo ph¸p vect¬ n v cã biªn l ®−êng cong kÝn Γ tr¬n tõng khóc, ®Þnh h−íng theo vect¬ tiÕp xóc T phï hîp víi h−íng ph¸p vect¬ n. Khi ®ã c«ng thøc Stokes viÕt l¹i ë d¹ng vect¬ nh− sau. ∫ < F, T > ds = ∫∫ < rotF, n > dS (6.5.3) Γ S Chän S l nöa mÆt cÇu t©m A, b¸n kÝnh ε. Tõ c«ng thøc (6.5.3) v ®Þnh lý vÒ trÞ trung b×nh cña tÝch ph©n mÆt lo¹i hai suy ra. 1 < rot F, n >(A) = lim ∫ < F, T > ds (6.5.4) ε→ 0 S Γ Theo c«ng thøc trªn, c−êng ®é cña tr−êng vect¬ rot F theo h−íng ph¸p vect¬ n t¹i ®iÓm A l c«ng tù quay cña ®iÓm A theo h−íng trôc quay n. Trang 106 Gi¸o Tr×nh To¸n Chuyªn §Ò
  9. Ch−¬ng 6. Lý ThuyÕt Tr−êng • Cho tr−êng vect¬ (D, F ) v ®iÓm A ∈ D. NÕu < rot F, n >(A) > 0 th× ®iÓm A gäi l ®iÓm xo¸y thuËn. NÕu < rot F, n >(A) < 0 th× ®iÓm A gäi l ®iÓm xo¸y nghÞch. VÝ dô Cho tr−êng vect¬ F = {xy, yz, zx} v n = {x, y, z} rot F = {z, x, y} v < rot F, n > = zx + xy + yz Ta cã < rot F, n > (1, 0, 1) = 1 > 0 ®iÓm (1, 0, 1) l ®iÓm xo¸y thuËn < rot F, n > (1, 0, -1) = -1 < 0 ®iÓm (1, 0, -1) l ®iÓm xo¸y nghÞch §Þnh lý Cho tr−êng vect¬ v ®iÓm A ∈ D. Max | < rot F, n >(A) | = | rot F(A) | ®¹t ®−îc khi v chØ khi n // rot F 1. Min | < rot F, n >(A) | = 0 ®¹t ®−îc khi v chØ khi n ⊥ rot F 2. Chøng minh Suy ra tõ tÝnh chÊt cña tÝch v« h−íng. • Theo kÕt qu¶ trªn th× c−êng ®é xo¸y cã trÞ tuyÖt ®èi lín nhÊt theo h−íng ®ång ph−¬ng víi vect¬ rot F v cã trÞ tuyÖt ®èi bÐ nhÊt theo h−íng vu«ng gãc víi vect¬ rot F. §6. To¸n tö Hamilton • Vect¬ t−îng tr−ng ∂ ∂ ∂ ∇= i+ j+ k (6.6.1) ∂x ∂y ∂z ∂ ∂ ∂ víi , v t−¬ng øng l phÐp lÊy ®¹o h m riªng theo c¸c biÕn x, y, v z gäi l ∂x ∂y ∂z to¸n tö Hamilton. • T¸c ®éng to¸n tö Hamilton mét lÇn chóng ta nhËn ®−îc c¸c tr−êng grad, div v rot ® nãi ë c¸c môc trªn nh− sau. 1. TÝch cña vect¬ ∇ víi tr−êng v« h−íng u l tr−êng vect¬ grad u ∂ ∂ ∂ ∂u ∂u ∂u ∇u = ( i+ j+ k)u = i+ j+ k (6.6.2) ∂x ∂y ∂z ∂x ∂y ∂z 2. TÝch v« h−íng cña vect¬ ∇ víi tr−êng vect¬ F l tr−êng v« h−íng div F ∂ ∂ ∂ ∂X ∂Y ∂Z ∇F = ( i+ j+ k)(Xi + Yj + Zk) = + + (6.6.3) ∂x ∂y ∂z ∂x ∂y ∂z 3. TÝch cã h−íng cña vect¬ ∇ víi tr−êng vect¬ F l tr−êng vect¬ rot F Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 107
  10. Ch−¬ng 6. Lý ThuyÕt Tr−êng ∂ ∂ ∂ ∇×F = ( k) × (Xi + Yj + Zk) i+ j+ ∂x ∂y ∂z  ∂Z ∂Y   ∂Y ∂X   ∂X ∂Z   ∂y − ∂z  i +  ∂x − ∂y  k − =   j + (6.6.4)    ∂z ∂x      • T¸c ®éng to¸n tö Hamilton hai lÇn chóng ta nhËn ®−îc c¸c to¸n tö vi ph©n cÊp hai. 4. Víi mäi tr−êng v« h−íng (D, u) thuéc líp C2 ∂2u ∂2u ∂2u ∂u ∂u ∂u = ∆u div (grad u) = div ( i+ j+ k) = + + (6.6.5) ∂x ∂y ∂z ∂x 2 ∂y 2 ∂z 2 To¸n tö ∂2 ∂2 ∂2 ∆= i+ j+ k ∂x 2 ∂y 2 ∂z 2 gäi l to¸n tö Laplace. ∆u = div (grad u) = ∇(∇u) = ∇2u Tøc l 5. Víi mäi tr−êng v« h−íng (D, u) thuéc líp C2 ∂u ∂u ∂u rot (grad u) = rot ( i+ j+ k) = 0 (6.6.6) ∂x ∂y ∂z rot (grad u) = ∇×∇u = 0 Tøc l 6. Víi mäi tr−êng vect¬ (D, F ) thuéc líp C2  ∂Y ∂X    ∂Z ∂Y   ∂X ∂Z   ∂x − ∂y  k  = 0 (6.6.7)  ∂y − ∂z  i +  ∂z − ∂x  j +  div (rot F) = div          div (rot F) = ∇(∇ × F) = 0 Tøc l 7. Víi mäi tr−êng vect¬ (D, F ) thuéc líp C2  ∂Y ∂X    ∂Z ∂Y   ∂X ∂Z   ∂x − ∂y  k   ∂y − ∂z  i +  ∂z − ∂x  j +  rot (rot F) = rot          = grad (div F) - ∆ F (6.6.8) §7. Tr−êng thÕ • Tr−êng vect¬ (D, F ) víi F = {X, Y, Z} gäi l tr−êng thÕ nÕu cã tr−êng v« h−íng (D, u) sao cho F = grad u. Tøc l ∂u ∂u ∂u X= Y= Z= (6.7.1) ∂x ∂y ∂z H m u gäi l h m thÕ vÞ cña tr−êng vect¬ F. Trang 108 Gi¸o Tr×nh To¸n Chuyªn §Ò
  11. Ch−¬ng 6. Lý ThuyÕt Tr−êng Tõ ®Þnh nghÜa suy ra nÕu tr−êng vect¬ F l tr−êng thÕ th× rot F = rot (grad u) = 0 (6.7.2) Chóng ta sÏ chøng minh r»ng ®iÒu ng−îc l¹i còng ®óng. §Þnh lý Tr−êng vect¬ (D, F ) l tr−êng thÕ khi v chØ khi rot F = 0 Chøng minh §iÒu kiÖn cÇn suy ra tõ c«ng thøc (6.7.2). Chóng ta chøng minh ®iÒu kiÖn ®ñ rot F = 0 Gi¶ sö Khi ®ã víi mäi ®−êng cong Γ kÝn, tr¬n tõng khóc v n»m gän trong miÒn D. ∫ Xdx + Ydy + Zdz = ∫∫ < rot F, n > dS = 0 Γ S víi S l mÆt cong tr¬n tõng m¶nh, n»m gän trong miÒn D v cã biªn ®Þnh h−íng theo ph¸p vect¬ n l ®−êng cong Γ. Suy ra víi mäi A, M ∈ D tÝch ph©n ∫ Xdx + Ydy + Zdz AM kh«ng phô thuéc v o ®−êng lÊy tÝch ph©n. Cè ®Þnh ®iÓm A ∈ D v ®Æt ∫ Xdx + Ydy + Zdz víi M ∈ D u(M) = AM Do c¸c h m X, Y, Z cã ®¹o h m riªng liªn tôc nªn h m u cã ®¹o h m riªng liªn tôc trªn miÒn D. KiÓm tra trùc tiÕp ta cã grad u = F Tõ ®ã suy ra tr−êng vect¬ F l tr−êng thÕ v h m u l h m thÕ vÞ cña nã. • Tõ c¸c kÕt qu¶ ë trªn suy ra ý nghÜa c¬ häc cña tr−êng thÕ nh− sau. 1. Trong tr−êng thÕ kh«ng cã ®iÓm xo¸y rot F = 0 2. Ho n l−u däc theo ®−êng cong kÝn n»m gän trong miÒn D lu«n b»ng kh«ng. ∫ < F, T > ds = ∫∫ < rot F, n > dS = 0 K= (6.7.3) Γ S 3. C«ng dÞch chuyÓn b»ng thÕ vÞ ®iÓm cuèi trõ ®i thÕ vÞ ®iÓm ®Çu. ∫ < F, T > ds = ∫ Xdx + Ydy + Zdz = ∫ du = u(N) - u(M) (6.7.4) MN MN MN u(M) u(N) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 109
  12. Ch−¬ng 6. Lý ThuyÕt Tr−êng §8. Tr−êng èng • Tr−êng vect¬ (D, F ) víi F = {X, Y, Z} gäi l tr−êng èng nÕu cã tr−êng vect¬ (D, G ) víi G = {X1, Y1, Z1} sao cho F = rot G. Tøc l ∂Z 1 ∂Y1 ∂X 1 ∂Z 1 ∂Y1 ∂X 1 − − − X= Y= Z= (6.8.1) ∂z ∂x ∂y ∂z ∂x ∂y Tr−êng vect¬ G gäi l tr−êng thÕ vÞ cña tr−êng vect¬ F. Tõ ®Þnh nghÜa suy ra nÕu F l tr−êng èng th× div F = div (rot G) = 0 (6.8.2) Cã thÓ chøng minh r»ng ®iÒu ng−îc l¹i còng ®óng. Tøc l chóng ta cã kÕt qu¶ sau ®©y. §Þnh lý Tr−êng vect¬ (D, F ) l tr−êng èng khi v chØ khi div F = 0 • Tõ c¸c kÕt qu¶ ë trªn suy ra ý nghÜa c¬ häc cña tr−êng èng nh− sau. 1. Trong tr−êng èng kh«ng cã ®iÓm nguån div F = 0 2. Th«ng l−îng qua mÆt cong kÝn n»m gän trong miÒn D lu«n b»ng kh«ng. ∫∫ < F, n > dS = ∫∫∫ divFdV Φ= (6.8.3) Ω S 3. Th«ng l−îng ®i qua c¸c mÆt c¾t cña mét luång l nh− nhau. Gi¶ sö S l mÆt trô kÝn nh− h×nh bªn n2 S = S0 + S1 + S2 n1 Trong ®ã S ®Þnh h−íng theo ph¸p vecto ngo i n F S0 ®Þnh h−íng theo ph¸p vecto n0 ng−îc h−íng S1 víi tr−êng vect¬ F, S1 ®Þnh h−íng theo ph¸p S vecto n1 cïng h−íng víi tr−êng vect¬ F. S2 n0 ®Þnh h−íng theo ph¸p vecto n2 vu«ng gãc víi S0 tr−êng vect¬ F. Theo tÝnh chÊt cña tr−êng èng v tÝnh céng tÝnh cña tÝch ph©n ∫∫ < F, n > dS = ∫∫ < F, n0 > dS + ∫∫ < F, n1 > dS + ∫∫ < F, n 2 > dS 0= S S0 S1 S2 Tõ ®ã suy ra ∫∫ < F, n1 > dS = - ∫∫ < F, n 0 > dS = ∫∫ < F, n 1 > dS S1 S0 S0 Hay nãi c¸ch kh¸c th«ng l−îng cña tr−êng èng ®i qua c¸c mÆt c¾t l mét h»ng sè. • Tr−êng vect¬ (D, F ) gäi l tr−êng ®iÒu ho nÕu nã võa l tr−êng thÕ v võa l tr−êng èng. Tøc l cã tr−êng v« h−íng (D, u ) v tr−êng vect¬ (D, G ) sao cho F = grad u = rot G (6.8.4) Tõ ®ã suy ra Trang 110 Gi¸o Tr×nh To¸n Chuyªn §Ò
  13. Ch−¬ng 6. Lý ThuyÕt Tr−êng ∆u = div (grad u) = div (rot G) = 0 (6.8.5) Tøc l h m thÕ vÞ cña tr−êng ®iÒu ho l h m ®iÒu ho . • Tõ c¸c kÕt qu¶ ë trªn suy ra ý nghÜa c¬ häc cña tr−êng èng nh− sau. 1. Trong tr−êng ®iÒu ho kh«ng cã ®iÓm xo¸y, ®iÓm nguån rot F = 0 v div F = 0 2. Ho n l−u däc theo ®−êng cong kÝn n»m gän trong miÒn D lu«n b»ng kh«ng. ∫ < F, T > ds = K= 0 Γ 3. Th«ng l−îng qua mÆt cong kÝn n»m gän trong miÒn D lu«n b»ng kh«ng. ∫∫ < F, n > dS Φ= S B i tËp ch−¬ng 6 1. T×m ®¹o h m t¹i ®iÓm A theo h−íng vect¬ e cña tr−êng v« h−íng u = xy - z2 a. A(1, 2, 3) v e{1, 1, 1} b. A(1, 1, 0) v e{0, 1, 1} c. A(1, 0, 1) v e l h−íng ph©n gi¸c trong cña gãc Oxy 2. Cho tr−êng v« h−íng u = x2 + y2 - z2 a. T×m ®é lín v h−íng cña vect¬ grad u t¹i ®iÓm A(1, - 2, 1) b. T×m gãc gi÷a grad u(1, 1, 1) v grad u(1, -1, 0) c. T×m ®iÓm M sao cho grad u(M) ®ång ph−¬ng víi trôc Oy x2 + y2 + z2 3. Cho tr−êng b¸n kÝnh r = ∂r 1 b. T×m grad v grad r2 víi e{-1, 0, 1} a. T×m ∂e r c. T×m grad f(r) víi h m f l h m cã ®¹o h m liªn tôc. 4. T×m Divergence cña c¸c tr−êng vect¬ F t¹i ®iÓm A sau ®©y. b. F = {xy2, yz2, zx2} v A(-2, 0, 1) a. F = {xy, yz, zx} v A(1, 1, 2) c. F = {xyz, x + y + z, xy + yz + zx} v A(0, 1, 2) 4. T×m Rotation cña c¸c tr−êng vect¬ F t¹i ®iÓm A sau ®©y. a. F = {x2y, y2z, z2x} v A(2, -1, 1) b. F = {yz, zx, xy} v A(1, 3, 2) 2 2 2 2 2 2 c. F = {x + y , y + z , z + x } v A(-2, 3, 1) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 111
  14. Ch−¬ng 6. Lý ThuyÕt Tr−êng 6. Chøng minh c¸c ®¼ng thøc sau ®©y. a. div (F × G) = F rot G - G rot F b. rot (rot F) = grad (div F) - ∆ F x 2 + y 2 + z 2 l tr−êng b¸n kÝnh, 7. Cho (D, u) v (D, v) l c¸c tr−êng v« h−íng, r = cßn h m f l h m cã ®¹o h m liªn tôc. H y tÝnh a. div (grad f(r)) b. div (u grad v) c. rot (grad rf(r)) 8. TÝnh th«ng l−îng cña tr−êng vect¬ F qua mÆt cong S. a. F = {x, y, z} qua phÇn mÆt ph¼ng x + y + z = 1 trong gãc phÇn t¸m thø nhÊt b. F = {xy, yz, zx} qua phÇn mÆt cÇu x2 + y2 + z2 = 1 trong gãc phÇn t¸m thø nhÊt c. F = {xy, yz, zx} qua phÇn mÆt parabole z = x2 + y2 v 0 ≤ z ≤ 1 d. F = {x, y, z} qua mÆt cong kÝn z = x2 + y2, 0 ≤ z ≤ 1 e. F = {x3, y3, z3} qua mÆt cong kÝn x2 + y2 + z2 = 1 f. F = {xy2, x2y, z} qua mÆt cong kÝn z = 4 - x2 - y2 v 0 ≤ z ≤ 4 9. TÝnh ho n l−u cña tr−êng vect¬ F däc theo ®−êng cong Γ. a. F = {x, y, z} theo ®−êng xo¾n èc x = a cost, y = a sint, z = bt víi t ∈ [0, π/2] b. F = {xy, yz, zx} theo ®o¹n th¼ng nèi hai ®iÓm A(a, 1, 1) v B(2, 4, 8) c. F = {-y, x, 0} theo ®−êng cong kÝn (x - 2)2 + y2 = 1 v z = 0 d. F = {x3, y3, z3} theo ®−êng cong kÝn x2 + y2 + z2 = 1 v x + y + z = 1 e. F = {xy2, x2y, z} theo ®−êng cong kÝn z = x2 + y2 v z = x + y Trang 112 Gi¸o Tr×nh To¸n Chuyªn §Ò
  15. Ch−¬ng 7 Ph−¬ng tr×nh truyÒn sãng §1. Ph−¬ng tr×nh ®¹o h m riªng tuyÕn tÝnh cÊp 2 • Cho miÒn D ⊂ 32 v c¸c h m a, b, c : D → 3. Ph−¬ng tr×nh ®¹o h m riªng tuyÕn tÝnh cÊp 2 víi hai biÕn ®éc lËp cã d¹ng nh− sau ∂2u ∂2u ∂2u ∂u ∂u a(x, y) + 2b(x, y) + c(x, y) 2 = F(x, y, u, , ) (7.1.1) ∂x∂y ∂x ∂y ∂x ∂y 2 ∆(x, y) = b2(x, y) - a(x, y)c(x, y) víi (x, y) ∈ D KÝ hiÖu 1. NÕu ∀ (x, y) ∈ D, ∆(x, y) > 0 th× ph−¬ng tr×nh (7.1.1) cã d¹ng hyperbole 2. NÕu ∀ (x, y) ∈ D, ∆(x, y) = 0 th× ph−¬ng tr×nh (7.1.1) cã d¹ng parabole 3. NÕu ∀ (x, y) ∈ D, ∆(x, y) < 0 th× ph−¬ng tr×nh (7.1.1) cã d¹ng ellipse • Gi¶ sö ¸nh x¹ ∂ξ ∂η ∂ξ ∂η − Φ : D → Ω, (x, y) → (ξ, η) víi J(x, y) = ≠0 (7.1.2) ∂x ∂y ∂y ∂x l phÐp ®æi biÕn tõ miÒn D v o miÒn Ω. Theo c«ng thøc ®¹o h m h m hîp ∂u ∂ξ ∂u ∂η ∂u ∂u ∂ξ ∂u ∂η ∂u + + = , = ∂ξ ∂x ∂η ∂x ∂y ∂ξ ∂y ∂η ∂y ∂x 2 2 ∂ 2 u  ∂ξ  ∂ 2 u ∂ξ ∂η ∂ 2 u  ∂η  ∂u ∂ 2 ξ ∂u ∂ 2 η ∂2u   +2 + 2  + + = ∂ξ 2  ∂x  ∂ξ∂η ∂x ∂x ∂η  ∂x  ∂ξ ∂x 2 ∂η ∂x 2 ∂x 2 ∂ 2 u ∂ξ ∂ξ ∂ 2 u  ∂ξ ∂η ∂ξ ∂η  ∂ 2 u ∂η ∂η ∂u ∂ 2ξ ∂u ∂ 2η ∂2u + + + + +  =2 ∂ξ ∂x ∂y ∂ξ∂η  ∂x ∂y ∂y ∂x  ∂η2 ∂x ∂y ∂ξ ∂x∂y ∂η ∂x∂y ∂x∂y   2 2 ∂2u ∂ 2 u  ∂ξ  ∂ 2 u ∂ξ ∂η ∂ 2 u  ∂η  ∂u ∂ 2ξ ∂u ∂ 2η   +2 +  + + = 2  ∂ξ∂η ∂y ∂y ∂η2  ∂y  ∂ξ ∂y 2 ∂η ∂y 2 ∂ξ  ∂y  ∂y 2  Thay v o ph−¬ng tr×nh (7.1.1) nhËn ®−îc ∂2u ∂2u ∂2u ∂u ∂u a1(ξ, η) + 2b1(ξ, η) + c1(ξ, η) 2 = F1(ξ, η, u, , ) ∂ξ∂η ∂ξ ∂η ∂ξ ∂η 2 Trong ®ã 2 2  ∂ξ  ∂ξ ∂ξ  ∂ξ  a1(ξ, η) = a(x, y)   + 2b(x, y) + c(x, y)    ∂y   ∂x  ∂x ∂y  Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 113
  16. Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng  ∂ξ ∂η ∂ξ ∂η  ∂ξ ∂ξ ∂η ∂η  ∂x ∂y + ∂y ∂x  + c(x, y) ∂x ∂y b1(ξ, η) = a(x, y) + b(x, y)   ∂x ∂y   2 2  ∂η  ∂η ∂η  ∂η  c1(ξ, η) = a(x, y)   + 2b(x, y) + c(x, y)    ∂y   ∂x  ∂x ∂y  Suy ra ∆1(ξ, η) = b1 - a1c1 = ∆(x, y)J2(x, y) 2 Tøc l chóng ta cã ®Þnh lý sau ®©y. §Þnh lý PhÐp ®æi biÕn kh«ng suy biÕn kh«ng l m thay ®æi d¹ng cña ph−¬ng tr×nh ®¹o h m riªng tuyÕn tÝnh cÊp 2. • NÕu ξ v η l c¸c nghiÖm riªng ®éc lËp cña ph−¬ng tr×nh 2 2  ∂ϕ  ∂ϕ ∂ϕ  ∂ϕ  + c(x, y)   = 0 a(x, y)   + 2b(x, y) (7.1.3)  ∂y   ∂x  ∂x ∂y  th× a1(x, y) = b1(x, y) = c1(x, y) = 0. Khi ®ã ph−¬ng tr×nh (7.1.1) cã d¹ng chÝnh t¾c ∂2u ∂u ∂u = F1(ξ, η, u, , ) ∂ξ ∂η ∂ξ∂η Gi¶ sö ϕ(x, y) l mét nghiÖm riªng kh«ng tÇm th−êng cña ph−¬ng tr×nh (7.1.3). Chóng ta cã (ϕx , ϕy) ≠ (0, 0) kh«ng gi¶m tæng qu¸t cã thÓ xem ϕy ≠ 0. Khi ®ã ph−¬ng tr×nh ϕ(x, y) = C x¸c ®Þnh h m Èn y = y(x) cã ®¹o h m y’(x) = - ϕx / ϕy . Thay v o ph−¬ng tr×nh (7.1.3) nhËn ®−îc ph−¬ng tr×nh vi ph©n a(x, y)y’2 - 2b(x, y)y’ + c(x, y) = 0 víi a(x, y) ≠ 0 (7.1.4) gäi l ph−¬ng tr×nh ®Æc tr−ng cña ph−¬ng tr×nh (7.1.1) 1. NÕu ∆(x, y) = b2(x, y) - a(x, y)c(x, y) > 0 th× ph−¬ng tr×nh (7.1.4) cã nghiÖm thùc b(x, y) ± ∆(x, y) ∫ dx + C y= a(x, y) §æi biÕn b(x, y) + ∆(x, y) b(x, y) − ∆(x, y) ∫ ∫ ξ+η=y- dx v ξ - η = y - dx a(x, y) a(x, y) §−a vÒ d¹ng chÝnh t¾c cña ph−¬ng tr×nh hyperbole ∂2u ∂2u ∂u ∂u = F2(ξ, η, u, - , ) (7.1.5) ∂ξ ∂η ∂ξ ∂η 2 2 2. NÕu ∆(x, y) = b2(x, y) - a(x, y)c(x, y) = 0 th× ph−¬ng tr×nh (7.1.4) cã nghiÖm kÐp Trang 114 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
31=>1