« Home « Kết quả tìm kiếm

NGHIÊN CỨU ẢNH HƯỞNG CỦA SÉT HỮU CƠ ĐẾN CÁC TÍNH CHẤT CỦA EPOXY


Tóm tắt Xem thử

- Giới thiệu về sét hữu cơ.
- Biến tính sét hữu cơ.
- Điều chế sét hữu cơ.
- Tổng hợp composite từ sét hữu cơ và epoxy.
- 403.1.TỔNG HỢP SÉT HỮU CƠ.
- 493.1.3.Khảo sát ảnh hưởng của pH dung dịch đến giá trị d001 trong sét hữu cơ.
- Khảo sát ảnh hưởng của thời gian phản ứng đến giá trị d001 trong sét hữu cơ.
- KHẢO SÁT KHẢ NĂNG GIA CƯỜNG CỦA SÉT HỮU CƠ CHO MÀNG PHỦ EPOXY-CLAY NANOCOMPOSITE.
- Ảnh hưởng của sét hữu cơ đến tính chất của màng phủ epoxy – clay composite.
- Nghiên cứu xác định các điều kiện phản ứng chế tạo sét hữu cơ từ 2 nguồn bentonite khác nhau, Prolabo (Pháp) và Bình Thuận (Việt Nam), so sánh đánh giá chất lượng của khoáng bentonite Bình Thuận.
- Khảo sát khả năng gia cường của sét hữu cơ được đề tài điều chế đến một số tính chất của vật liệu epoxy..
- Giới thiệu về sét hữu cơ [9,13].
- Hữu cơ hóa MMT là phản ứng trao đổi giữa các cation kim loại có trong cấu trúc khoáng sét với các cation amoni hữu cơ.
- Hình 1.4: Mô tả cấu trúc của sét sau khi biến tính hữu cơ (organoclay) Quá trình giãn khoảng cách lớp MMT làm tăng khả năng xâm nhập của các chất hữu cơ hay polyme vào khoảng xen giữa các lớp..
- Phản ứng hữu cơ hóa MMT xảy ra theo phương trình sau: R - N.
- Silan là các monome silicon hữu cơ được đặc trưng bởi công thức hoá học R-SiX3.
- [4] Các tác nhân hữu cơ thường sử dụng để biến tính MMT được giới thiệu trong bảng 1.2:.
- Bảng 1.2: Các chất hữu cơ dùng làm tác nhân biến tính MMT.
- Biến tính hữu cơ hóa khoáng sét (MMT - hữu cơ hay organoclay.
- Tiến hành khuếch tán MMT - hữu cơ vào trong polyme bằng các phương pháp [12]: phương pháp dung dịch.
- Phương pháp dung dịch Polyme nền được hoà tan trong dung môi hữu cơ.
- Tiếp theo cho khuếch tán sét hữu cơ vào dung dịch polyme.
- Dung môi hữu cơ xâm nhập vào các lớp MMT đã hữu cơ hóa.
- Phương pháp trộn hợp Phương pháp trộn hợp được tiến hành cho khuếch tán trực tiếp sét hữu cơ trong dung dịch polyme nóng chảy.
- Phương pháp phổ hồng ngoại được dùng để xác định các nhóm nguyên chức đặc trưng trong cấu trúc của bentonite và sét hữu cơ.
- Các mẫu bentonite và sét hữu cơ hấp phụ bức xạ hồng ngoại tùy thuộc vào tần số dao động của các nhóm chức trong thành phần cấu trúc của chúng như nhóm –OH..
- Các mẫu bentonite và sét hữu cơ được sấy khô, nghiền mịn với KBr tinh khiết, ép viên và đo mẫu.
- Hình 2.5: Quy trình tổng hợp sét hữu cơ Khảo sát một số điều kiện trong quá trình điều chế sét hữu cơ được tiến hành như sau:.
- Hàm lượng hữu cơ.
- trong sản phẩm sét hữu cơ được tính bằng hiệu số giữa tổng các hiệu ứng mất khối lượng trên giản đồ phân tích nhiệt (TG) của các mẫu bentonite được chế hóa khi có và không có DMDOA.
- Tổng hợp composite từ sét hữu cơ và epoxy *Quy trình tổng hợp vật liệu epoxy – clay composite từ epoxy và sét hữu cơ: Hình 2.6: Quy trình chế tạo vật liệu epoxy – clay composite.
- Sét hữu cơ lấy theo tỷ lệ % khối lượng (0,5%.
- CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 3.1.TỔNG HỢP SÉT HỮU CƠ.
- Giản đồ XRD của bentonite – Prolabo (Pháp) và các mẫu sét hữu cơ điều chế ở nhiệt độ khác nhau được trình bày trên hình 3.1, 3.2: Hình 3.1: Giản đồ XRD của bentonite – Prolabo (Pháp).
- Hình 3.2: Giản đồ XRD của mẫu sét hữu cơ ở các nhiệt độ 20oC, 30oC, 40oC.
- Từ hình 3.1, 3.2 cho thấy giản đồ XRD của các mẫu sét hữu cơ thu được có hình dạng giống nhau, góc 2θ cực đại của bentonite từ 60 -70 đã bị dịch chuyển về khoảng trong sét hữu cơ.
- Điều đó khẳng định sự có mặt của chất hữu cơ giữa các lớp bentonite.
- Giá trị d001 và đồ thị biểu diễn mối quan hệ của d001 vào nhiệt độ của các mẫu sét hữu cơ điều chế ở nhiệt độ khác nhau được trình bày trên bảng 3.1 và hình 3.3:.
- của các mẫu sét hữu cơ.
- Sét hữu cơ điều chế đã làm tăng giá trị d001 lên rất nhiều từ 12,824Å (trong bentonite – Prolabo) đến khoảng 35,504Å – 36,89Å (trong các mẫu sét hữu cơ)..
- Giản đồ phân tích nhiệt của bentonite – Prolabo (Pháp) và mẫu sét hữu cơ điều chế ở 300C được trình bày ở hình 3.4 và 3.5:.
- Hình 3.5: Giản đồ phân tích nhiệt của mẫu sét hữu cơ điều chế ở 300C.
- chất hữu cơ thâm nhập trong sét hữu cơ vào nhiệt độ được tính như trong mục 2.2.1, được trình bày trên bảng 3.2 và hình 3.6..
- Qua các kết quả ghi trên giản đồ XRD và phân tích nhiệt của các mẫu sét hữu cơ điều chế trong điều kiện nhiệt độ khác nhau cho thấy ở nhiệt độ 300C mẫu sét hữu cơ đạt giá trị d001 lớn nhất và hàm lượng.
- chất hữu cơ trong sản phẩm cũng đạt giá trị tương đối cao (30,48%)..
- Vì vậy chúng tôi chọn điều kiện nhiệt độ phù hợp cho quá trình điều chế sét hữu cơ là nhiệt độ 300C.
- Hình 3.6: Giản đồ XRD của mẫu sét hữu cơ với tỉ lệ khối lượng.
- Giản đồ XRD, các giá trị d001 và đồ thị biểu diễn sự phụ thuộc giá trị d001 vào tỷ lệ khối lượng của các mẫu sét hữu cơ khảo sát ở các tỷ lệ khối lượng DMDOA/bentonite khác nhau được trình bày trên hình 3.6, bảng 3.3 và hình 3.7 Bảng 3.3: Sự phụ thuộc của giá trị d001 vào tỉ lệ khối lượng.
- Mẫu sét hữu cơ có tỷ lệ khối lượng DMDOA/bentonite = 0,6 đã được khảo sát bằng phân tích nhiệt (hình 3.8).
- Hình 3.8: Giản đồ phân tích nhiệt của mẫu sét hữu cơ với tỷ lệ khối lượng DMDOA/bentonite : 0,6.
- Vì vậy chúng tôi chọn tỉ lệ khối lượng DMDOA/bentonite là 0,6 cho việc điều chế sét hữu cơ..
- 3.1.3.Khảo sát ảnh hưởng của pH dung dịch đến giá trị d001 trong sét hữu cơ.
- Các thí nghiệm khảo sát ảnh hưởng của pH dung dịch đến giá trị d001 trong sét hữu cơ được tiến hành như mô tả ở mục 2.3.1 với các điều kiện: khối lượng của bentonite – Prolabo (Pháp): 1 gam.
- Giản đồ XRD của mẫu sét hữu cơ có pH dung dịch là 9 và sự phụ thuộc của giá trị d001 vào pH của dung dịch được trình bày trên hình và bảng 3.5: Hình 3.10: Giản đồ XRD của mẫu sét hữu cơ điều chế ở pH = 9 Bảng 3.5: Sự phụ thuộc của giá trị d001 vào pH của dung dịch phản ứng.
- Giá trị pH của dung dịch bằng 9 là điều kiện môi trường phù hợp cho quá trình điều chế sét hữu cơ.
- Khảo sát ảnh hưởng của thời gian phản ứng đến giá trị d001 trong sét hữu cơ Các thí nghiệm khảo sát ảnh hưởng của thời gian phản ứng đến giá trị d001 trong sét hữu cơ được tiến hành như mô tả ở mục 2.3.1 với các điều kiện: khối lượng của bentonite – Prolabo (Pháp): 1 gam.
- Giản đồ XRD của mẫu sét hữu cơ có thời gian phản ứng là 4 giờ và sự phụ thuộc của giá trị d001 vào thời gian phản ứng được trình bày trên hình và bảng 3.6:.
- Hình 3.12: Giản đồ XRD của mẫu sét hữu cơ điều chế.
- Vì vậy thời gian phản ứng phù hợp cho quá trình điều chế sét hữu cơ được lựa chọn là 4h.
- Kết luận: Sau khi tiến hành khảo sát phản ứng ở các điều kiện khác nhau, chúng tôi tiến hành tổng hợp 2 mẫu sét hữu cơ từ 2 nguồn bentonite là bentonite Prolabo (Pháp) và bentonite Bình Thuận (Việt Nam) với tỉ lệ khối lượng = 0,6.
- Từ hình cho thấy phổ hồng ngoại của hai mẫu bentonite và sét hữu cơ đều có hình dạng giống nhau..
- Hình 3.16: Phổ nhiễu xạ tia X của sét hữu cơ.
- Giá trị d001 trong bentonite đều tăng đáng kể trong sét hữu cơ: từ 12,824Å đến 38,651Å (mẫu Pháp), từ 12,77Å đến 39,239Å (mẫu Bình Thuận – Việt Nam).
- Hình 3.19: Phổ phân tích nhiệt của sét hữu cơ.
- Hình 3.20: Phổ phân tích nhiệt của bentonite Bình Thuận (Việt Nam) Hình 3.21: Phổ phân tích nhiệt của sét hữu cơ điều chế từ bentonite Bình Thuận (Việt Nam) trong điều kiện tối ưu.
- Hình 3.24: Ảnh SEM của sét hữu cơ.
- điều chế từ bentonite Prolabo-Pháp ở điều kiện tối ưu Hình 3.25: Ảnh SEM của sét hữu cơ điều chế từ bentonite (Bình Thuận – Việt Nam) ở điều kiện tối ưu.
- Kết quả chụp ảnh SEM của các mẫu sét hữu cơ (hình thu được cho thấy chúng đều có cấu trúc lớp và có độ xốp khá cao, điều đó thuận lợi cho việc sử dụng để đưa vào polyme trong quá trình tổng hợp vật liệu composite ở phần sau.
- Giản đồ XRD của các lớp phủ được biến tính bằng sét hữu cơ từ bentonite (Pháp) và bentonite - Bình Thuận (Việt Nam) được trình bày trên hình 3.27, 3.28.
- Hình 3.27: Giản đồ XRD của mẫu màng phủ (gia cường bằng sét hữu cơ Prolabo - Pháp) với nồng độ 1% sét hữu cơ..
- Hình 3.28: Giản đồ XRD của mẫu màng phủ (gia cường bằng sét hữu cơ Bình Thuận - Việt Nam) với nồng độ 1% sét hữu cơ..
- Như vậy, đề tài đã chế tạo lớp phủ epoxy – clay composite có cấu trúc nano, các hạt sét hữu cơ đã được phân tách tốt bằng nhựa epoxy.
- Hình 3.29: Ảnh SEM của mẫu màng phủ epoxy được gia cường bởi sét hữu cơ điều chế từ bentonite Prolabo - Pháp (P) với nồng độ 1% sét hữu cơ.
- Hình 3.30: Ảnh SEM của mẫu màng phủ epoxy được gia cường bởi sét hữu cơ điều chế từ bentonite Bình Thuận (Việt Nam) với nồng độ 1% sét hữu cơ..
- Tính chất cơ lý của màng phủ được gia cường bằng sét hữu cơ điều chế từ bentonite Prolabo (Pháp) và bentonite Bình Thuận (Việt Nam) được trình bày trên các bảng 3.8 và 3.9 tương ứng..
- Bảng 3.8: Tính chất cơ lý của màng phủ epoxy được gia cường bởi sét hữu cơ điều chế từ bentonite Prolabo - Pháp (P) Ký hiệu mẫu.
- Chỉ số từ 0,5-5 là hàm lượng sét hữu cơ trong mẫu.
- Đáng chú ý ở sự thay đổi độ cứng của màng phủ, nó được gia tăng khá nhiều khi có mặt của sét hữu cơ.
- Độ cứng của mẫu không có sét hữu cơ P-0 có giá trị 61,2%, khi được gia cường bằng sét hữu cơ với hàm lượng từ 0,5% đến 4% giá trị này đã tăng lên trên 8% và đạt giá trị cực đại ở mẫu P-1 (85,2.
- Như vậy sét hữu cơ đã có tác dụng gia tăng độ cứng của màng phủ epoxy – clay composite, hiệu ứng nano đã thể hiện rõ nét ở mẫu P-1 với hàm lượng sét hữu cơ 1.
- Hiệu ứng nano của sét hữu cơ có nguồn gốc từ Bình Thuận cũng đã được khảo sát để so sánh.
- Các tính chất cơ lý của lớp phủ epoxy – clay composite có gia cường loại sét hữu cơ này được thể hiện trên bảng 3.9..
- Bảng 3.9: Tính chất cơ lý của màng phủ epoxy được gia cường bởi sét hữu cơ điều chế từ bentonite Bình Thuận - Việt Nam (B) Ký hiệu mẫu.
- Từ bảng 3.9 thấy rằng, các tính chất cơ lý của màng phủ được gia cường bởi sét hữu cơ có nguồn gốc từ Bình Thuận diễn biến tương tự như đối với sét hữu cơ có nguông gốc từ Pháp.
- Độ cứng của màng phủ cũng đạt giá trị cực đại ở mẫu B-1 khi sử dụng 1% sét hữu cơ có nguồn gốc từ Bình Thuận (91,5.
- Giá trị độ cứng cực đại đã tăng 150% so với mẫu không được gia cường bởi sét hữu cơ..
- Độ bền nhiệt của màng phủ epoxy gia cường bởi sét hữu cơ đã được đánh giá bằng phương pháp phân tích nhiệt, các kết quả được thể hiện trên bảng 3.10.
- Từ bảng 3.10 thấy rằng, khi có mặt của sét hữu cơ biến tính, nhiệt độ phân hủy mạnh nhất T1 đã thay đổi, điều đó chứng tỏ hiệu ứng gia cường của khoáng sét đã được thể hiện.
- Bảng 3.10: Kết quả phân tích nhiệt của màng phủ epoxy gia cường sét hữu cơ được điều chế từ bentonite Prolabo - Pháp (P) và bentonite Bình Thuận - Việt Nam 1% (B).
- Sét hữu cơ đã được điều chế từ bentonite có nguồn gốc Prolabo (CH Pháp) và Bình Thuận (Việt Nam).
- Với sét hữu cơ đi từ bentonite Prolabo (Pháp), d001 tăng từ 12,824Å đến 38,651Å và phần trăm thâm nhập hợp chất hữu cơ là 32,93.
- Với sét hữu cơ đi từ bentonite Bình Thuận (Việt Nam), d001 tăng từ 12,77Å đến 39,239Å và phần trăm thâm nhập hợp chất hữu cơ là 31,85%.
- Sét hữu cơ từ bentonite Bình Thuận (Việt Nam) có chất lượng tương đương hoặc có phần tốt hơn so với sản phẩm cùng loại từ bentonite Prolabo- Pháp..
- Sét hữu cơ đề tài chế tạo có khả năng gia cường tốt cho nhựa epoxy.
- Màng phủ epoxy-clay composite có các tính chất tốt hơn khi không được gia cường bởi sét hữu cơ.
- Đề tài đã xác định được hàm lượng tối ưu của sét hữu cơ trong màng phủ là 1%, sản phẩm có các tính chất tốt nhất.
- Sét hữu cơ được chế tạo từ nguồn bentonite Bình Thuận có hiệu ứng gia cường tốt hơn cho màng phủ epoxy so với sản phẩm cùng loại từ nguồn bentonite Prolabo.
- [6] Nguyễn Trọng Nghĩa, Ngô Sĩ Lương, Thân Văn Liên (2008), “Điều chế sét hữu cơ từ bentonite Bình Thuận và cetyltrimetylamoni bromua”, Tạp chí Hóa học, tập 46 số 2.
- Sét hữu cơ.
- Sét hữu cơ + dung môi